Build Intelligent Search Systems with AI
Ben Greenberg

#Vector
#JavaScript
#AI
#CLI
🤖 پیچیدگیها رو کنار بزن و با استراتژیهای جستجوی برداری مبتنی بر هوش مصنوعی، تجربههای جستجوی هوشمندتر و شهودیتری بساز
تجربهای که کاربر رو درگیر نگه میداره و نتایج دقیقتری ارائه میکنه.
🧠 نتایج جستجو رو برای کاربران روزمره هوشمندتر و کاربردیتر کن
🚫 دیگه به روشهای قدیمی جستجو تکیه نکن
⚙️ جستجو رو با تکنیکهای مبتنی بر AI متحول کن
📈 تجربه کاربری بهتر با جستجوی برداری
🧰 آنچه نیاز دارید
📑 فهرست مطالب
بخش I: مبانی جستجوی برداری
1. شروع کار با جستجوی برداری
2. درک جستجوی برداری
3. تولید امبدینگهای برداری
بخش II: ساخت یک سرویس جستجوی برداری
4. ایجاد زیرساخت اولیه برای جستجوی برداری
5. طراحی بکاند برای جستجوی برداری
6. ساخت سرویس تولید امبدینگهای برداری
7. ایجاد سرویس جستجوی برداری
8. ساخت ایندکس جستجوی برداری
9. افزودن قابلیتهای جستجوی برداری
10. بهینهسازی نتایج جستجو
11. کاربردهای عملی و گامهای بعدی
👤 درباره نویسنده
بن گرینبرگ توسعهدهنده و Developer Advocateای هست که تمرکز اصلیش سادهسازی مفاهیم پیچیده فناوریه.
سابقه همکاری با New Relic، Vonage و Couchbase رو داره و در حال حاضر عضو هیئتمدیره Ruby Central هست.
بن سخنران و مدرس فعال کنفرانسهای بینالمللیه و از طریق وبسایت bengreenberg.dev، دانش و منابع آموزشی خودش رو با جامعه توسعهدهندگان به اشتراک میذاره.
Cut through the complexity and apply AI-driven vector search strategies to deliver smarter, more intuitive search experiences that keep users engaged.
Make search results smarter and more useful for everyday users and deliver more relevant results with vector search. Go beyond keyword matching to build search experiences that understand meaning, context, and similarity. Use AI-powered techniques to create recommendation systems, personalized search, and content discovery tools. Implement vector search from the ground up with step-by-step guidance, real-world examples, and hands-on coding. Generate embeddings, construct vector indexes, and optimize search accuracy with practical methods that integrate seamlessly into JavaScript applications. Whether refining an existing project or developing a new one, unlock the power of AI-driven search to create smarter, more intuitive user experiences.
Stop relying on outdated search methods. Deploy vector search and deliver smarter, more intuitive search experiences that keep users engaged. This comprehensive guide takes a deep dive into the world of vector search, offering a hands-on approach for developers looking to bring AI-powered utility and precision into their projects. This book demystifies the core concepts of vector search, making them accessible and practical — and you don't need a background in math to learn vector search techniques!
Revolutionize search with AI-powered techniques that go beyond simple keyword matching. Implement vector search to build applications that understand intent, meaning, and similarity. Generate embeddings, construct efficient vector indexes, and power recommendation systems, personalized search, and content discovery tools. Master practical techniques to integrate vector search into JavaScript applications with real-world examples and step-by-step tutorials.
Cut through the complexity and apply AI-driven search strategies to create better user experiences. Use vector search to return more relevant results, surface hidden insights, and handle ambiguous queries with greater precision. Build scalable, high-performance search systems that enhance products across industries, from e-commerce and media to finance and healthcare.
What You Need:
To get the most out of this book, you’ll need a basic understanding of JavaScript and Node.js, as all examples are written in this language. While familiarity with data structures and algorithms is helpful, these concepts are explained in the book for those who need a refresher. Experience with command-line interfaces (CLI) and the terminal will also be useful as you work through the examples.
Table of Contents
Part I-Foundations of Vector Search
1. Getting Started with Vector Search
2. Understanding Vector Search
3. Generating Vector Embeddings
Part II-Building a Vector Search Service
4. Building the Foundation for Vector Search
5. Structuring the Back End for Vector Search
6. Building the Vector Embedding Generation Service
7. Creating a Vector Search Service
8. Creating a Vector Search Index
9. Incorporating Vector Search Functionality
10. Optimizing Search Results
11. Practical Applications and Next Steps
Ben Greenberg is a developer advocate and software engineer who is passionate about making complex tech accessible. He has worked with New Relic, Vonage, and Couchbase, and currently serves on the board of Ruby Central. A frequent speaker and instructor at global conferences, Ben shares insights and resources at bengreenberg.dev.









