نام کتاب
Transformers for Natural Language Processing

Build, train, and fine-tune deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, and GPT-3
Denis Rothman

Paperback565 Pages
PublisherPackt
Edition2
LanguageEnglish
Year2022
ISBN9781803247335
10
1K
A1344
انتخاب نوع چاپ:
جلد سخت
812,000ت
0
جلد نرم
882,000ت(2 جلدی)
0
طلق پاپکو و فنر
902,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:رنگی با کادر / تصویر
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

NLP#

Python#

PyTorch#

TensorFlow#

BERT#

RoBERTa#

GPT-2#

GPT-3#

OpenAI#

توضیحات

Learn how to use and implement transformers with Hugging Face and OpenAI (and others) by reading, running examples, investigating issues, asking the author questions, and interacting with our AI/ML community


Key Features

  • •  Pretrain a BERT-based model from scratch using Hugging Face
  • •  Fine-tune powerful transformer models, including OpenAI's GPT-3, to learn the logic of your data
  • •  Perform root cause analysis on hard NLP problems


Book Description

Transformers are...well...transforming the world of AI. There are many platforms and models out there, but which ones best suit your needs?

Transformers for Natural Language Processing, 2nd Edition, guides you through the world of transformers, highlighting the strengths of different models and platforms, while teaching you the problem-solving skills you need to tackle model weaknesses.

You'll use Hugging Face to pretrain a RoBERTa model from scratch, from building the dataset to defining the data collator to training the model.

If you're looking to fine-tune a pretrained model, including GPT-3, then Transformers for Natural Language Processing, 2nd Edition, shows you how with step-by-step guides.

The book investigates machine translations, speech-to-text, text-to-speech, question-answering, and many more NLP tasks. It provides techniques to solve hard language problems and may even help with fake news anxiety (read chapter 13 for more details).

You'll see how cutting-edge platforms, such as OpenAI, have taken transformers beyond language into computer vision tasks and code creation using Codex.

By the end of this book, you'll know how transformers work and how to implement them and resolve issues like an AI detective!


What you will learn

  • •  Find out how ViT and CLIP label images (including blurry ones!) and create images from a sentence using DALL-E
  • •  Discover new techniques to investigate complex language problems
  • •  Compare and contrast the results of GPT-3 against T5, GPT-2, and BERT-based transformers
  • •  Carry out sentiment analysis, text summarization, casual speech analysis, machine translations, and more using TensorFlow, PyTorch, and GPT-3
  • •  Measure the productivity of key transformers to define their scope, potential, and limits in production


Who this book is for

If you want to learn about and apply transformers to your natural language (and image) data, this book is for you.

You'll need a good understanding of Python and deep learning and a basic understanding of NLP to benefit most from this book. Many platforms covered in this book provide interactive user interfaces, which allow readers with a general interest in NLP and AI to follow several chapters. And, don't worry if you get stuck or have questions; this book gives you direct access to our AI/ML community and author, Denis Rothman. So, he'll be there to guide you on your transformers journey!


Table of Contents

  1. 1. What are Transformers?
  2. 2. Getting Started with the Architecture of the Transformer Model
  3. 3. Fine-Tuning BERT Models
  4. 4. Pretraining a RoBERTa Model from Scratch
  5. 5. Downstream NLP Tasks with Transformers
  6. 6. Machine Translation with the Transformer
  7. 7. The Rise of Suprahuman Transformers with GPT-3 Engines
  8. 8. Applying Transformers to Legal and Financial Documents for AI Text Summarization
  9. 9. Matching Tokenizers and Datasets
  10. 10. Semantic Role Labeling with BERT-Based Transformers
  11. 11. Let Your Data Do the Talking: Story, Questions, and Answers
  12. 12. Detecting Customer Emotions to Make Predictions
  13. 13. Analyzing Fake News with Transformers
  14. 14. Interpreting Black Box Transformer Models

(N.B. Please use the Look Inside option to see further chapters)

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
NLP
1,244
Mastering Transformers
592,000 تومان
NLP
1,001
Natural Language Processing with PyTorch
386,000 تومان
NLP
1,487
Natural Language Processing with Transformers
539,000 تومان
NLP
946
Deep Learning for Natural Language Processing
426,000 تومان
NLP
928
Natural Language Processing with TensorFlow
827,000 تومان
NLP
970
Python Natural Language Processing Cookbook
474,000 تومان
Apache Spark
896
Natural Language Processing with Spark NLP
497,000 تومان
هوش مصنوعی
976
Practical Natural Language Processing
585,000 تومان
NLP
909
Transfer Learning for Natural Language Processing
396,000 تومان
NLP
1,180
Transformers for Natural Language Processing
882,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©