From vibe coding to best practices using GitHub Copilot, ChatGPT, and OpenAI
Hila Paz Herszfang, Peter V. Henstock

#GenAI
#OpenAI
#Copilot
#GitHub
#LLM
#GenAI
#API
#PyCharm
#Jupyter
#SDLC
#CoT
⚡ قدرت هوش مصنوعی مولد (Generative AI) را در توسعهی پایتون آزاد کنید و بیاموزید چگونه میتوانید با استفاده از مثالهای واقعی و راهکارهای عملی، سرعت، کیفیت و کارایی کدنویسی خود را بهطور چشمگیری افزایش دهید.
🔑 ویژگیهای کلیدی:
💻 توضیحات کتاب:
توسعهی نرمافزار با ظهور ابزارهای هوش مصنوعی مولد مانند ChatGPT، OpenAI API و GitHub Copilot دگرگون شده است. این کتاب به شما کمک میکند تا به یک کاربر حرفهای GenAI برای تولید کد پایتون تبدیل شوید و بتوانید سریعتر و هوشمندانهتر نرمافزار بسازید.
اثر حاضر به قلم یک مشاور یادگیری ماشین با تجربهی صنعتی و حضور فعال در شبکههای فناوری و یکی از رهبران برجستهی حوزهی هوش مصنوعی با تجربهی تدریس در سطح هاروارد نوشته شده و ترکیبی از دانش دانشگاهی و بینش عملی صنعت را ارائه میدهد.
🤖 با مطالعهی این کتاب:
🧠 فراتر از تولید کد، میآموزید چگونه فرآیندهایی مانند اشکالزدایی (Debugging)، بازآرایی (Refactoring)، بهینهسازی عملکرد، تست و پایش (Monitoring) را خودکار کنید.
با استفاده از چارچوبهای پرامپت قابلاستفادهمجدد و جریانهای کاری مبتنی بر هوش مصنوعی، چرخهی توسعهی نرمافزار خود را ساده و منسجمتر خواهید کرد.
🚀 در پایان این کتاب، قادر خواهید بود:
Unlock the power of generative AI in Python development and learn how you can enhance your coding speed, quality, and efficiency with real-world examples and hands-on strategies
Software development is being transformed by GenAI tools, such as ChatGPT, OpenAI API, and GitHub Copilot, redefining how developers work. This book will help you become a power user of GenAI for Python code generation, enabling you to write better software faster. Written by an ML advisor with a thriving tech social media presence and a top AI leader who brings Harvard-level instruction to the table, this book combines practical industry insights with academic expertise.
With this book, you'll gain a deep understanding of large language models (LLMs) and develop a systematic approach to solving complex tasks with AI. Through real-world examples and practical exercises, you’ll master best practices for leveraging GenAI, including prompt engineering techniques like few-shot learning and Chain-of-Thought (CoT).
Going beyond simple code generation, this book teaches you how to automate debugging, refactoring, performance optimization, testing, and monitoring. By applying reusable prompt frameworks and AI-driven workflows, you’ll streamline your software development lifecycle (SDLC) and produce high-quality, well-structured code.
By the end of this book, you'll know how to select the right AI tool for each task, boost efficiency, and anticipate your next coding moves—helping you stay ahead in the AI-powered development era.
If you are a Python developer curious about GenAI and are looking to elevate your software engineering productivity, Supercharged Coding with GenAI will transform your approach to software. Covering various structured examples of varying problem complexities that showcase the use of advanced prompting techniques, this book is suitable for early intermediate through advanced developers. To get the most out of this book, you should have at least one year of hands-on Python development experience and be somewhat familiar with the SDLC.
Part 1: Foundations for Coding with GenAI
Chapter 1: From Automation to Full Software Development Life Cycle: The Current Opportunity for GenAI
Chapter 2: Your Quickstart Guide to OpenAI API
Chapter 3: A Guide to GitHub Copilot with PyCharm, VS Code, and Jupyter Notebook
Chapter 4: Best Practices for Prompting with ChatGPT
Chapter 5: Best Practices for Prompting with OpenAI API and GitHub Copilot
Part 2: Basics to Advanced LLM Prompting for GenAI Coding
Chapter 6: Behind the Scenes: How ChatGPT, GitHub Copilot, and Other LLMs Work
Chapter 7: Reading and Understanding Code Bases with GenAI
Chapter 8: An Introduction to Prompt Engineering
Chapter 9: Advanced Prompt Engineering for Coding-Related Tasks
Chapter 10: Refactoring Code with GenAI
Chapter 11: Fine-Tuning Models with OpenAI
Part 3: From Code to Production with GenAI
Chapter 12: Documenting Code with GenAI
Chapter 13: Writing and Maintaining Unit Tests
Chapter 14: GenAI for Runtime and Memory Management
Chapter 15: Going Live with GenAI: Logging, Monitoring, and Errors
Chapter 16: Architecture, Design, and the Future
About the Author
Hila Paz Herszfang, with seven years of building machine learning (ML) services and leading teams, holds a master's degree in information management systems and is completing a second master's in data science, both from Harvard Extension School. She developed a Python for MLOps Udemy course and runs a math and tech TikTok channel boasting 15K followers and 300K+ likes.
Peter V. Henstock is an AI expert with 25+ years of experience at Pfizer, Incyte, and MIT LL. He teaches graduate software engineering and AI/ML courses at Harvard Extension School. He holds a PhD in AI from Purdue and seven Master's degrees. Recognized as a top AI leader by DKA, Peter guides professionals in AI/ML, software, visualization, and statistics.









