نام کتاب
Python Data Cleaning and Preparation Best Practices

A practical guide to organizing and handling data from various sources and formats using Python

Maria Zervou

Paperback456 Pages
PublisherPackt
Edition1
LanguageEnglish
Year2024
ISBN9781837634743
422
A5803
انتخاب نوع چاپ:
جلد سخت
722,000ت
0
جلد نرم
662,000ت
0
طلق پاپکو و فنر
672,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Python

#Data_Cleaning

#LLMs

توضیحات

Take your data preparation skills to the next level by converting any type of data asset into a structured, formatted, and readily usable dataset


Key Features

  • Maximize the value of your data through effective data cleaning methods
  • Enhance your data skills using strategies for handling structured and unstructured data
  • Elevate the quality of your data products by testing and validating your data pipelines


Book Description

Professionals face several challenges in effectively leveraging data in today's data-driven world. One of the main challenges is the low quality of data products, often caused by inaccurate, incomplete, or inconsistent data. Another significant challenge is the lack of skills among data professionals to analyze unstructured data, leading to valuable insights being missed that are difficult or impossible to obtain from structured data alone.


To help you tackle these challenges, this book will take you on a journey through the upstream data pipeline, which includes the ingestion of data from various sources, the validation and profiling of data for high-quality end tables, and writing data to different sinks. You’ll focus on structured data by performing essential tasks, such as cleaning and encoding datasets and handling missing values and outliers, before learning how to manipulate unstructured data with simple techniques. You’ll also be introduced to a variety of natural language processing techniques, from tokenization to vector models, as well as techniques to structure images, videos, and audio.


By the end of this book, you’ll be proficient in data cleaning and preparation techniques for both structured and unstructured data.


What you will learn

  • Ingest data from different sources and write it to the required sinks
  • Profile and validate data pipelines for better quality control
  • Get up to speed with grouping, merging, and joining structured data
  • Handle missing values and outliers in structured datasets
  • Implement techniques to manipulate and transform time series data
  • Apply structure to text, image, voice, and other unstructured data


Who this book is for

Whether you're a data analyst, data engineer, data scientist, or a data professional responsible for data preparation and cleaning, this book is for you. Working knowledge of Python programming is needed to get the most out of this book.


Table of Contents

  1. Data Ingestion Techniques
  2. Importance of Data Quality
  3. Data Profiling – Understanding Data Structure, Quality, and Distribution
  4. Cleaning Messy Data and Data Manipulation
  5. Data Transformation – Merging and Concatenating
  6. Data Grouping, Aggregation, Filtering, and Applying Functions
  7. Data Sinks
  8. Detecting and Handling Missing Values and Outliers
  9. Normalization and Standardization
  10. Handling Categorical Features
  11. Consuming Time Series Data
  12. Text Preprocessing in the Era of LLMs
  13. Image and Audio Preprocessing with LLMs


About the Author

Maria Zervou is a Generative AI and machine learning expert, dedicated to making advanced technologies accessible. With over a decade of experience, she has led impactful AI projects across industries and mentored teams on cutting-edge advancements. As a machine learning specialist at Databricks, Maria drives innovative AI solutions and industry adoption. Beyond her role, she democratizes knowledge through her YouTube channel, featuring experts on AI topics. A recognized thought leader and finalist in the Women in Tech Excellence Awards, Maria advocates for responsible AI use and contributes to open source projects, fostering collaboration and empowering future AI leaders.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
iOS
1,015
Core Data by Tutorials
567,000 تومان
AWS
1,288
AWS Certified Database – Specialty (DBS-C01) Certification Guide
680,000 تومان
Machine Learning
506
Data Engineering for Machine Learning Pipelines
1,037,000 تومان
Data
1,334
Experiment-Driven Product Development
307,000 تومان
Data
949
MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exa...
1,593,000 تومان
Data
352
Driving Data Quality with Data Contracts
388,000 تومان
Azure
1,271
Azure Data Engineering Cookbook
989,000 تومان
Data
841
Building a Data Culture
419,000 تومان
Data
815
Data Quality Engineering in Financial Services
355,000 تومان
SQL
969
SQL Queries for Mere Mortals
1,375,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©