Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python
Denny Lee, Tomasz Drabas

#PySpark
#Python
#Apache_Spark
#DataFrames
#RDDs
#MLLib
Combine the power of Apache Spark and Python to build effective big data applications
Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.
You'll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You'll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you'll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You'll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.
By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.
The PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.
About the author
Denny Lee is a long-time Apache Spark™ and MLflow contributor, Delta Lake maintainer, and a Sr. Staff Developer Advocate at Databricks. A hands-on distributed systems and data sciences engineer with extensive experience developing internet-scale data platforms and predictive analytics systems. He has previously built enterprise DW/BI and big data systems at Microsoft, including Azure Cosmos DB, Project Isotope (HDInsight), and SQL Server. He was also the Senior Director of Data Sciences Engineering at SAP Concur. He also has a Masters of Biomedical Informatics from Oregon Health and Sciences University and has implemented powerful data solutions for enterprise Healthcare customers. His current technical focuses include Distributed Systems, Delta Lake, Apache Spark, Deep Learning, Machine Learning, and Genomics.
Read less









