0
نام کتاب
Probabilistic Graphical Models

Principles and Applications

Luis Enrique Sucar

Paperback370 Pages
PublisherSpringer
Edition2
LanguageEnglish
Year2021
ISBN9783030619428
1K
A2248
انتخاب نوع چاپ:
جلد سخت
694,000ت
0
جلد نرم
614,000ت
0
طلق پاپکو و فنر
624,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Probabilistic

#Graphical_Models

#deep_learning

#PGM

#Python

توضیحات

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.


The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.


Topics and features:

  • Presents a unified framework encompassing all of the main classes of PGMs
  • Explores the fundamental aspects of representation, inference and learning for each technique
  • Examines new material on partially observable Markov decision processes, and graphical models
  • Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models 
  • Covers multidimensional Bayesian classifiers, relational graphical models, and causal models
  • Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects
  • Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks
  • Outlines the practical application of the different techniques
  • Suggests possible course outlines for instructors


This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.

Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.


About the Author

Dr. Luis Enrique Sucar is a Senior Research Scientist in the Department of Computing at the National Institute of Astrophysics, Optics and Electronics (INAOE), Mexico.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
برنامه‌‌ نویسـی
752
Mathematics in Programming
647,000 تومان
برنامه‌‌ نویسـی
950
Fundamentals of Computational Intelligence
628,000 تومان
برنامه‌‌ نویسـی
438
Matters Computational
1,812,000 تومان
برنامه‌‌ نویسـی
283
Integer Programming
604,000 تومان
برنامه‌‌ نویسـی
1,085
Doing Math with Python
488,000 تومان
هک و امنیت
1,078
Math for Security
547,000 تومان
Python
1,145
Math Adventures with Python
538,000 تومان
برنامه‌‌ نویسـی
1,025
Think Bayes
576,000 تومان
Machine Learning
3,295
Mathematics for Machine Learning
672,000 تومان
Deep Learning
1,234
Math for Deep Learning
587,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©