0
نام کتاب
Practical Explainable AI Using Python

 Artificial Intelligence Model Explanations Using Python-based Libraries, Extensions, and Frameworks

Pradeepta Mishra

Paperback356 Pages
PublisherApress
Edition1
LanguageEnglish
Year2022
ISBN9781484271575
949
A3588
انتخاب نوع چاپ:
جلد سخت
678,000ت
0
جلد نرم
598,000ت
0
طلق پاپکو و فنر
608,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#AI

#Python

#Artificial_Intelligence

#TensorFlow

#2.0

#Keras

#SHAP

#ELI5

توضیحات

Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.

You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision


Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, you will be introduced to model explainability for unstructured data, classification problems, and natural language processing–related tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks.


What You'll Learn

  • Review the different ways of making an AI model interpretable and explainable
  • Examine the biasness and good ethical practices of AI models
  • Quantify, visualize, and estimate reliability of AI models
  • Design frameworks to unbox the black-box models
  • Assess the fairness of AI models
  • Understand the building blocks of trust in AI models
  • Increase the level of AI adoption


Who This Book Is For:

AI engineers, data scientists, and software developers involved in driving AI projects/ AI products.


Table of Contents

Chapter 1: Model Explainability and lnterpretability 

Chapter 2: Al Ethics, Biasness, and Reliability 

Chapter 3: Explainability for Linear Models 

Chapter 4: Explainability for Non-Linear Models 

Chapter 5: Explainability for Ensemble Models 

Chapter 6: Explainability for Time Series Models

Chapter 7: Explainability for NLP 

Chapter 8: Al Model Fairness Using a What-If Scenario 

Chapter 9: Explainability for Deep Learning Models 

Chapter 10: Counterfactual Explanations for XAI Models 

Chapter 11: Contrastive Explanations for Machine Learning 

Chapter 12: Model-Agnostic Explanations by Identifying Prediction Invariance 

Chapter 13: Model Explainability for Rule-Based Expert Systems 

Chapter 14: Model Explainability for Computer Vision 


About the Author

Pradeepta Mishra is the Head of AI (Leni) at L&T Infotech (LTI), leading a large group of data scientists, computational linguistics experts, machine learning and deep learning experts in building next generation product, ‘Leni’ world’s first virtual data scientist. He was awarded as "India's Top - 40Under40DataScientists" by Analytics India Magazine. He is an author of 4 books, his first book has been recommended in HSLS center at the University of Pittsburgh, PA, USA. His latest book #PytorchRecipes was published by Apress. He has delivered a keynote session at the Global Data Science conference 2018, USA. He has delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions and community arranged forums.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
PyTorch
352
Generative AI with Python and PyTorch
712,000 تومان
Python
1,275
Machine Learning for Financial Risk Management with Python
571,000 تومان
Python
1,124
Python All-in-One For Dummies
1,329,000 تومان
Python
1,496
Python Concurrency with asyncio
624,000 تومان
Python
1,084
Data Visualization with Python and JavaScript
1,023,000 تومان
Python
934
Linear Models with Python
541,000 تومان
Python
1,780
Python Data Science Handbook
1,050,000 تومان
Python
1,087
Python 3 Standard Library by Example
2,255,000 تومان
Python
1,016
Elements of Programmirg Intenriews in Python
689,000 تومان
Artificial intelligence
1,070
Artificial Intelligence with Python Cookbook
721,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©