نام کتاب
Outlier Detection in Python

Brett Kennedy

Paperback562 Pages
PublisherManning
Edition1
LanguageEnglish
Year2025
ISBN9781633436473
312
A5769
انتخاب نوع چاپ:
جلد سخت
686,000ت
0
جلد نرم
746,000ت(2 جلدی)
0
طلق پاپکو و فنر
766,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

Python#

data#

PyOD#

OD#

توضیحات

Learn how to find the unusual, interesting, extreme, or inaccurate parts of your data.


Outliers can be the most informative parts of your data, revealing hidden insights, novel patterns, and potential problems. For a business, this can mean finding new products, expanding markets, and flagging fraud or other suspicious activity. Outlier Detection in Python introduces the tools and techniques you'll need to uncover the parts of a dataset that don't look like the rest, even when they're the more hidden or intertwined among the expected bits.


In Outlier Detection in Python you'll learn how to:

  • Use standard Python libraries to identify outliers
  • Pick the right detection methods
  • Combine multiple outlier detection methods for improved results
  • Interpret your results
  • Work with numeric, categorical, time series, and text data


Outlier detection (OD) is a vital tool for everything from financial auditing to network security. OD techniques also work for testing datasets for quality, collection errors, and data drift. This unique guide introduces the core tools of outlier detection like scikit-learn and PyOD, the principal algorithms used in outlier detection, and common pitfalls you might encounter.


Table of Contents

Part 1

1 Introducing outlier detection

2 Simple outlier detection 

3 Machine learning-based outlier detection

4 The outlier detection process


Part 2

5 Outlier detection using scikit-learn

6 The PyOD library

7 Additional libraries and algorithms for outlier detection


Part 3

8 Evaluating detectors and parameters

9 Working with specific data types

10 Handling very large and very small datasets

11 Synthetic data for outlier detection

12 Collective outliers 

13 Explainable outlier detection

14 Ensembles of outlier detectors

15 Working with outlier detection predictions


Part 4

16 Deep learning-based outlier detection

17 Time-series data


About the Author

Brett Kennedy is a data scientist with over thirty years' experience in software development and data science. He has worked in outlier detection related to financial auditing, fraud detection, and social media analysis. He previously led a research team focusing on outlier detection.



دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
آمار و احتمالات
835
A First Course In Probability For Computer And Data Science
340,000 تومان
Machine Learning
941
Data-Driven Science and Engineering
918,000 تومان
Data
769
Forecasting Time Series Data with Prophet
374,000 تومان
Data
863
Architecting Modern Data Platforms
810,000 تومان
Data
784
Exploring Modeling with Data and Differential Equations Using R
462,000 تومان
Data
844
Exam Ref 70-767 Implementing a SQL Data Warehouse
381,000 تومان
Data
814
Cost-Effective Data Pipelines
381,000 تومان
Data
336
Hands-On Salesforce Data Cloud
526,000 تومان
Data
288
In-Memory Analytics with Apache Arrow
486,000 تومان
Data
842
CompTIA Data+ Study Guide
454,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©