نام کتاب
OCaml Scientific Computing

Functional Programming in Data Science and Artificial Intelligence

Liang Wang, Jianxin Zhao, Richard Mortier

Paperback372 Pages
PublisherSpringer
Edition1
LanguageEnglish
Year2022
ISBN9783030976446
882
A4264
انتخاب نوع چاپ:
جلد سخت
630,000ت
0
جلد نرم
570,000ت
0
طلق پاپکو و فنر
580,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#OCaml

#Computing

#Data_Science

#Artificial_Intelligence

#Machine_Learning

#ODEs

توضیحات

This book is about the harmonious synthesis of functional programming and numerical computation. It shows how the expressiveness of OCaml allows for fast and safe development of data science applications. Step by step, the authors build up to use cases drawn from many areas of Data Science, Machine Learning, and AI, and then delve into how to deploy at scale, using parallel, distributed, and accelerated frameworks to gain all the advantages of cloud computing environments.


To this end, the book is divided into three parts, each focusing on a different area. Part I begins by introducing how basic numerical techniques are performed in OCaml, including classical mathematical topics (interpolation and quadrature), statistics, and linear algebra. It moves on from using only scalar values to multi-dimensional arrays, introducing the tensor and Ndarray, core data types in any numerical computing system. It concludes with two more classical numerical computing topics, the solution of Ordinary Differential Equations (ODEs) and Signal Processing, as well as introducing the visualization module we use throughout this book. Part II is dedicated to advanced optimization techniques that are core to most current popular data science fields. We do not focus only on applications but also on the basic building blocks, starting with Algorithmic Differentiation, the most crucial building block that in turn enables Deep Neural Networks. We follow this with chapters on Optimization and Regression, also used in building Deep Neural Networks. We then introduce Deep Neural Networks as well as topic modelling in Natural Language Processing (NLP), two advanced and currently very active fields in both industry and academia. Part III collects a range of case studies demonstrating how you can build a complete numerical application quickly from scratch using Owl. The cases presented include computer vision and recommender systems.


This book aims at anyone with a basic knowledge of functional programming and a desire to explore the world of scientific computing, whether to generally explore the field in the round, to build applications for particular topics, or to deep-dive into how numerical systems are constructed. It does not assume strict ordering in reading – readers can simply jump to the topic that interests them most.


Table of Contents

Part I Numerical Techniques

Chapter 1 Introduction

Chapter 2 Numerical Algorithms

Chapter 3 Statistics

Chapter 4 Linear Algebra

Chapter 5 N-Dimensional Arrays

Chapter 6 Ordinary Differential Equations

Chapter 7 Signal Processing

Part II Advanced Data Analysis Techniques

Chapter 8 Algorithmic Differentiation

Chapter 9 Optimisation

Chapter 10 Regression

Chapter 11 Neural Network

Chapter 12 Vector Space Modelling

Part III Use Cases

Chapter 13 Case Study: Image Recognition

Chapter 14 Case Study: Instance Segmentation

Chapter 15 Case Study: Neural Style Transfer

Chapter 16 Case Study: Recommender System

Appendix A Conventions of Owl

Appendix B Visualisation


About the Authors

Liang Wang is a Principal AI Architect at Nokia, a Senior Researcher at the University of Cambridge, an Intel Software Innovator, and the Chief Scientific Officer at IKVA. He has a broad research interest in artificial intelligence, machine learning, operating systems, computer networks, optimization theory, and graph theory.


Jianxin Zhao is a PhD graduate from the University of Cambridge. His research interests include numerical computation, artificial intelligence, decentralized systems, and their application in the real world.


Richard Mortier is a Professor in Computing and Human-Data Interaction at the University of Cambridge. He works at the intersection of systems and networking with human-computer interaction, and he currently focuses on building user-centric systems infrastructure.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Data
410
In-Memory Analytics with Apache Arrow
607,000 تومان
Python
1,031
Data Visualization with Python and JavaScript
946,000 تومان
Data
944
The Practitioner's Guide to Graph Data
622,000 تومان
Data
887
Pro Database Migration to Azure
540,000 تومان
Data
900
Data Governance The Definitive Guide
441,000 تومان
Data
885
Mastering Apache Pulsar
428,000 تومان
Data
918
Building the Snowflake Data Cloud
692,000 تومان
Data
1,112
Clean Code Cookbook
635,000 تومان
Data
950
MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exa...
1,593,000 تومان
Data
1,226
Cleaning Data for Effective Data Science
709,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©