Versatile Tools to Solve Deep Learning Problems
Andre Ye

#Deep_Learning
#Application_Development
#HyperOpt
#PyTorch
#TensorFlow
#Keras
Learn how to harness modern deep-learning methods in many contexts. Packed with intuitive theory, practical implementation methods, and deep-learning case studies, this book reveals how to acquire the tools you need to design and implement like a deep-learning architect. It covers tools deep learning engineers can use in a wide range of fields, from biology to computer vision to business. With nine in-depth case studies, this book will ground you in creative, real-world deep learning thinking.
You’ll begin with a structured guide to using Keras, with helpful tips and best practices for making the most of the framework. Next, you’ll learn how to train models effectively with transfer learning and self-supervised pre-training. You will then learn how to use a variety of model compressions for practical usage. Lastly, you will learn how to design successful neural network architectures and creatively reframe difficult problems into solvable ones. You’ll learn not only to understand and apply methods successfully but to think critically about it.
Modern Deep Learning Design and Methods is ideal for readers looking to utilize modern, flexible, and creative deep-learning design and methods. Get ready to design and implement innovative deep-learning solutions to today’s difficult problems.
What You’ll Learn
Who This Book Is For
Data scientists with some familiarity with deep learning to deep learning engineers seeking structured inspiration and direction on their next project. Developers interested in harnessing modern deep learning methods to solve a variety of difficult problems.
Table of Contents
Chapter 1: A Deep Dive into Keras
Chapter 2: Pretraining Strategies and Transfer Learning
Chapter 3: The Versatility of Autoencoders
Chapter 4: Model Compression for Practical Deployment
Chapter 5: Automating Model Design with Meta-optimization
Chapter 6: Successful Neural Network Architecture Design
Chapter 7: Reframing Difficult Deep Learning Problems
Andre Ye is a data science writer and editor; he has written over 300 data science articles for various top data science publications with over ten million views. He is also a cofounder at Critiq, a peer revision platform that uses machine learning to match users’ essays. In his spare time, Andre enjoys keeping up with current deep learning research, playing the piano, and swimming.









