نام کتاب
Modern Data Mining Algorithms in C++ and CUDA C

Recent Developments in Feature Extraction and Selection Algorithms for Data Science
Timothy Masters

Paperback233 Pages
PublisherApress
Edition1
LanguageEnglish
Year2020
ISBN9781484259870
938
A957
انتخاب نوع چاپ:
جلد سخت
423,000ت
0
جلد نرم
363,000ت
0
طلق پاپکو و فنر
373,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:سیاه و سفید
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

Data_Mining#

Algorithms#

C++#

CUDA#

توضیحات

Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables.
 

As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:


  • •  Forward selection component analysis
  • •  Local feature selection
  • •  Linking features and a target with a hidden Markov model
  • •  Improvements on traditional stepwise selection
  • •  Nominal-to-ordinal conversion


All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. 
 

The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.  
 

What You Will Learn

  • •  Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set.
  • Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods.

  • •  Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.

  • •  Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input.
     

Who This Book Is For 

Intermediate to advanced data science programmers and analysts.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
C
945
Introducing Algorithms in C
285,000 تومان
C
835
Programming in Objective-C
811,000 تومان
C
100
Test Driven Development for Embedded C
495,000 تومان
C
864
C Interfaces and Implementations
794,000 تومان
C
764
Writing a C Compiler
1,052,000 تومان
C
1,047
Mastering Algorithms with C
822,000 تومان
C
1,094
C How to Program (Global Edition)
1,092,000 تومان
C
990
Professional CMake
1,057,000 تومان
C
886
Objective-C for Absolute Beginners
510,000 تومان
++C
1,384
Build Your Own Redis with C/C++
235,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©