Attack Detection and Attribution
Joshua Saxe, Hillary Sanders
Malware#
Data_Science#
data#
machine_learning#
big_data#
network#
security#
analysis#
در کتاب Malware Data Science، جاشوا ساکس (Joshua Saxe)، دانشمند داده در حوزه امنیت سایبری، به بررسی روشهای علمی و عملی برای تحلیل و شناسایی بدافزارها با استفاده از یادگیری ماشین، تحلیل آماری، شبکههای اجتماعی و مصورسازی دادهها میپردازد. این کتاب با رویکردی مبتنی بر دادههای بزرگ، به خواننده میآموزد که چگونه با استفاده از ابزارهای علوم داده، تهدیدات سایبری پیچیده امروزی را شناسایی و تحلیل کند.
این کتاب پلی بین امنیت اطلاعات و علم داده است و به شما کمک میکند تا با نگاهی تحلیلیتر و مبتنی بر داده، در برابر تهدیدات پیشرفته روزافزون ایستادگی کنید.
Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization.
Security has become a "big data" problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist.
In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis.
You'll learn how to:
Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.
Table of Contents
Chapter 1: Basic Static Malware Analysis
Chapter 2: Beyond Basic Static Analysis: x86 Disassembly
Chapter 3: A Brief Introduction to Dynamic Analysis
Chapter 4: Identifying Attack Campaigns Using Malware Networks
Chapter 5: Shared Code Analysis
Chapter 6: Understanding Machine Learning–Based Malware Detectors
Chapter 7: Evaluating Malware Detection Systems
Chapter 8: Building Machine Learning Detectors
Chapter 9: Visualizing Malware Trends
Chapter 10: Deep Learning Basics
Chapter 11: Building a Neural Network Malware Detector with Keras
Chapter 12: Becoming a Data Scientist
"For those looking to become a security data scientist, or just want to get a comprehensive understanding of how to use data science to deal with malicious software, Malware Data Science is a superb reference."
—Ben Rothke, RSA Conference
"If you are new to data science or machine learning, this book provides an excellent introduction to these topics."
—DMFR Security
Joshua Saxe is Chief Data Scientist at major security vendor, Sophos, where he leads a security data science research team. He's also a principal inventor of Sophos' neural network-based malware detector, which defends tens of millions of Sophos customers from malware infections. Before joining Sophos, Joshua spent 5 years leading DARPA funded security data research projects for the US government.
Hillary Sanders leads the infrastructure data science team at Sophos, which develops the frameworks used to build Sophos' deep learning models. Before joining Sophos, Hillary created a recipe web app and spent three years as a data scientist at Premise Data Corporation.