نام کتاب
Machine Learning for Physics and Astronomy

Viviana Acquaviva

Paperback281 Pages
PublisherPrinceton University
Edition1
LanguageEnglish
Year2023
ISBN9780691206417
676
A5064
انتخاب نوع چاپ:
جلد سخت
586,000ت
0
جلد نرم
526,000ت
0
طلق پاپکو و فنر
536,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:A4
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Machine_Learning

#Physics

#Astronomy

توضیحات

A hands-on introduction to machine learning and its applications to the physical sciences


As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider.


  • Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given task
  • Each chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key concepts
  • Includes a wealth of review questions and quizzes
  • Ideal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematics
  • Accessible to self-learners with a basic knowledge of linear algebra and calculus


Table of Contents

1. Introduction to Machine Learning Methods

2. First Supervised Models: Neighbors and Trees

3. Supervised Classification: Evaluation and Diagnostics

4. Supervised Learning Models: Optimization

5. Regression

6. Ensemble Methods

7. Clustering and Dimensionality Reduction

8. Introduction to Neural Networks

9. Summary and Additional Resources


About the Author

Viviana Acquaviva is professor of physics at the New York City College of Technology and the Graduate Center, City University of New York, and the recipient of a PIVOT fellowship to apply AI tools to problems in climate. She was named one of Italy’s fifty most inspiring women in technology by InspiringFifty, which recognizes women in STEM who serve as role models for girls around the world.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
ستاره شناسی
650
Black Hole Physics
651,000 تومان
ستاره شناسی
586
Physics of Binary Star Evolution
1,272,000 تومان
ستاره شناسی
1,169
Fundamental Astronomy
1,033,000 تومان
ستاره شناسی
953
An Introduction to Celestial Mechanics
466,000 تومان
ستاره شناسی
676
Machine Learning for Physics and Astronomy
526,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©