0
نام کتاب
Machine Learning for Asset Managers

Elements in Quantitative Finance

Marcos M. López de Prado 

Paperback152 Pages
PublisherCambridge
Edition1
LanguageEnglish
Year2020
ISBN9781108792899
1K
A2840
انتخاب نوع چاپ:
جلد سخت
433,000ت
0
جلد نرم
353,000ت
0
طلق پاپکو و فنر
363,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Machine_Learning

#ML

#Finance

توضیحات

Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to “learn” complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.


Contents

1 Introduction

2 Denoising and Detoning

3 Distance Metrics

4 Optimal Clustering

5 Financial Labels 65

6 Feature Importance Analysis

7 Portfolio Construction

8 Testing Set Overfitting


Review

‘The book’s excellent introduction explains why machine learning techniques will benefit asset managers substantially and why traditional or classical linear techniques have limitations and are often inadequate in asset management. It makes a strong case that ML is not a black box but a set of data tools that enhance theory and improve data clarity. López de Prado focuses on seven complex problems or topics where applying new techniques developed by ML specialists will add value.’ Mark S. Rzepczynski, Enterprising Investor


About the Author

Marcos López de Prado is Professor of Practice at Cornell University's College of Engineering. He has helped modernize finance for the past 20 years, by advancing the adoption of machine learning and supercomputing, and by developing statistical tests that identify false investment strategies (false positives). In recognition of this work, Marcos has received various scientific awards, including the National Award for Academic Excellence (1999) by the Kingdom of Spain, the Quant of the Year Award (2019) by The Journal of Portfolio Management, and the Buy-Side Quant of the Year Award (2021) by Risk.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Data
865
Practical Weak Supervision
402,000 تومان
Data
1,076
Becoming a Data Head
493,000 تومان
Machine Learning
1,137
Practical MLOps
724,000 تومان
Machine Learning
1,156
Machine Learning for Finance
718,000 تومان
Python
1,044
Applied Recommender Systems with Python
479,000 تومان
Python
1,085
Hands-on Machine Learning with Python
578,000 تومان
JavaScript
1,298
Hands-on Machine Learning with JavaScript
583,000 تومان
Python
1,016
Machine Learning on Geographical Data Using Python
547,000 تومان
Python
1,963
Distributed Machine Learning with Python
511,000 تومان
Machine Learning
1,105
Machine Learning for OpenCV 4
656,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©