نام کتاب
Machine Learning for Asset Managers

Elements in Quantitative Finance

Marcos M. López de Prado 

Paperback152 Pages
PublisherCambridge
Edition1
LanguageEnglish
Year2020
ISBN9781108792899
980
A2840
انتخاب نوع چاپ:
جلد سخت
388,000ت
0
جلد نرم
328,000ت
0
طلق پاپکو و فنر
338,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Machine_Learning

#ML

#Finance

توضیحات

Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to “learn” complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.


Contents

1 Introduction

2 Denoising and Detoning

3 Distance Metrics

4 Optimal Clustering

5 Financial Labels 65

6 Feature Importance Analysis

7 Portfolio Construction

8 Testing Set Overfitting


Review

‘The book’s excellent introduction explains why machine learning techniques will benefit asset managers substantially and why traditional or classical linear techniques have limitations and are often inadequate in asset management. It makes a strong case that ML is not a black box but a set of data tools that enhance theory and improve data clarity. López de Prado focuses on seven complex problems or topics where applying new techniques developed by ML specialists will add value.’ Mark S. Rzepczynski, Enterprising Investor


About the Author

Marcos López de Prado is Professor of Practice at Cornell University's College of Engineering. He has helped modernize finance for the past 20 years, by advancing the adoption of machine learning and supercomputing, and by developing statistical tests that identify false investment strategies (false positives). In recognition of this work, Marcos has received various scientific awards, including the National Award for Academic Excellence (1999) by the Kingdom of Spain, the Quant of the Year Award (2019) by The Journal of Portfolio Management, and the Buy-Side Quant of the Year Award (2021) by Risk.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Machine Learning
1,115
Active Machine Learning with Python
354,000 تومان
Artificial intelligence
199
Introduction to Graph Neural Networks
352,000 تومان
Python
1,010
Python Machine Learning By Example
891,000 تومان
Machine Learning
1,015
Hands-On Machine Learning with C++
884,000 تومان
Machine Learning
1,066
Machine Learning Engineering in Action
956,000 تومان
Machine Learning
783
The Mathematics of Machine Learning
394,000 تومان
Machine Learning
1,917
Machine Learning with Amazon SageMaker Cookbook
1,160,000 تومان
Machine Learning
941
Machine Learning Crash Course for Engineers
681,000 تومان
Data Science
1,379
Introduction to Machine Learning with Python
592,000 تومان
Machine Learning
1,590
Mastering Azure Machine Learning
1,007,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©