نام کتاب
Machine Learning Refined

Foundations, Algorithms, and Applications

 Jeremy Watt, Reza Borhani, Aggelos K. Katsaggelos

Paperback594 Pages
PublisherCambridge
Edition2
LanguageEnglish
Year2020
ISBN9781108480727
1K
A3003
انتخاب نوع چاپ:
جلد سخت
874,000ت
0
جلد نرم
974,000ت(2 جلدی)
0
طلق پاپکو و فنر
994,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Machine_Learning

#Algorithms

#computer_vision

توضیحات

With its intuitive yet rigorous approach to machine learning, this text provides students with the fundamental knowledge and practical tools needed to conduct research and build data-driven products. The authors prioritize geometric intuition and algorithmic thinking, and include detail on all the essential mathematical prerequisites, to offer a fresh and accessible way to learn. Practical applications are emphasized, with examples from disciplines including computer vision, natural language processing, economics, neuroscience, recommender systems, physics, and biology. Over 300 color illustrations are included and have been meticulously designed to enable an intuitive grasp of technical concepts, and over 100 in-depth coding exercises (in python) provide a real understanding of crucial machine learning algorithms. A suite of online resources including sample code, data sets, interactive lecture slides, and a solutions manual are provided online, making this an ideal text both for graduate courses on machine learning and for individual reference and self-study.


Contents

1 Introduction to Machine l earning


Part I Mathematical Optimization

2 Zero-Order Optimization Techniques

3 First-Order Optimization Techniques

4 Second-Order Optimization Techniques


Part II linear l earning

5 l inear Regression

6 l inear Two-Class Classification

7 linear Multi-Class Classification

8 linear Unsupervised l earning

9 Feature Engineering and Select ion


Part Ill Nonlinear l earning

10 Principles of Nonlinear Feature Engineering

11 Principles of Feature l earning

12 Kernel Methods

13 Fully Connected Neural Networks

14 Tree-Based l earners


Part IV Appendices

Appendix A Advanced First- and Second-Order Optimization Methods

Appendix B Derivatives and Automatic Differentiation

Appendix C l inear Algebra


Review

'An excellent book that treats the fundamentals of machine learning from basic principles to practical implementation. The book is suitable as a text for senior-level and first-year graduate courses in engineering and computer science. It is well organized and covers basic concepts and algorithms in mathematical optimization methods, linear learning, and nonlinear learning techniques. The book is nicely illustrated in multiple colors and contains numerous examples and coding exercises using Python.' John G. Proakis, University of California, San Diego


'Some machine learning books cover only programming aspects, often relying on outdated software tools; some focus exclusively on neural networks; others, solely on theoretical foundations; and yet more books detail advanced topics for the specialist. This fully revised and expanded text provides a broad and accessible introduction to machine learning for engineering and computer science students. The presentation builds on first principles and geometric intuition, while offering real-world examples, commented implementations in Python, and computational exercises. I expect this book to become a key resource for students and researchers.' Osvaldo Simeone, Kings College London


'This book is great for getting started in machine learning. It builds up the tools of the trade from first principles, provides lots of examples, and explains one thing at a time at a steady pace. The level of detail and runnable code show what's really going when we run a learning algorithm.' David Duvenaud, University of Toronto


'This book covers various essential machine learning methods (e.g., regression, classification, clustering, dimensionality reduction, and deep learning) from a unified mathematical perspective of seeking the optimal model parameters that minimize a cost function. Every method is explained in a comprehensive, intuitive way, and mathematical understanding is aided and enhanced with many geometric illustrations and elegant Python implementations.' Kimiaki Sihrahama, Kindai University, Japan


'Books featuring machine learning are many, but those which are simple, intuitive, and yet theoretical are extraordinary 'outliers'. This book is a fantastic and easy way to launch yourself into the exciting world of machine learning, grasp its core concepts, and code them up in Python or Matlab. It was my inspiring guide in preparing my 'Machine Learning Blinks' on my BASIRA YouTube channel for both undergraduate and graduate levels.' Islem Rekik, Director of the Brain And SIgnal Research and Analysis (BASIRA) Laboratory


'With its intuitive yet rigorous approach to machine learning, this text provides students with the fundamental knowledge and practical tools needed to conduct research and build data-driven products. The authors prioritize geometric intuition and algorithmic thinking, and include detail on all the essential mathematical prerequisites, to offer a fresh and accessible way to learn. Practical applications are emphasized, with examples from disciplines including computer vision, natural language processing, economics, neuroscience, recommender systems, physics, and biology. Over 300 color illustrations are included and have been meticulously designed to enable an intuitive grasp of technical concepts, and over 100 in-depth coding exercises (in Python) provide a real understanding of crucial machine learning algorithms. A suite of online resources including sample code, data sets, interactive lecture slides, and a solutions manual are provided online, making this an ideal text both for graduate courses on machine learning and for individual reference and self-study.' politcommerce.com


Book Description

An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.


About the Author

Jeremy Watt received his Ph.D. in Electrical Engineering from Northwestern University, Illinois, and is now a machine learning consultant and educator. He teaches machine learning, deep learning, mathematical optimization, and reinforcement learning at Northwestern University, Illinois.


Reza Borhani received his Ph.D. in Electrical Engineering from Northwestern University, Illinois, and is now a machine learning consultant and educator. He teaches a variety of courses in machine learning and deep learning at Northwestern University, Illinois.


Aggelos K. Katsaggelos is the Joseph Cummings Professor at Northwestern University, Illinois, where he heads the Image and Video Processing Laboratory. He is a Fellow of Institute of Electrical and Electronics Engineers (IEEE), SPIE, the European Association for Signal Processing (EURASIP), and The Optical Society (OSA) and the recipient of the IEEE Third Millennium Medal (2000).

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Machine Learning
886
Patterns, Predictions, and Actions
500,000 تومان
Machine Learning
1,043
Introduction to Machine Learning
1,302,000 تومان
Machine Learning
459
Machine Learning System Design
573,000 تومان
Data Science
699
Time Series Forecasting Using Foundation Models
444,000 تومان
Machine Learning
1,315
Probabilistic Machine Learning
1,431,000 تومان
Machine Learning
3,339
Practical Machine Learning on Databricks
429,000 تومان
Machine Learning
1,391
Machine Learning Techniques for Text
653,000 تومان
Machine Learning
904
Machine Learning for Kids
539,000 تومان
Python
1,010
Machine Learning with Python for Everyone
967,000 تومان
Python
857
Python Machine Learning
498,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©