Manage the lifecycle of machine learning models using MLOps with practical examples
Andrew P. McMahon

#Machine_Learning
#Python
#ETML
#ML
#software_engineering
#LLMs
#MLOps
#AI
#PyTorch
#ZenML
#Kubeflow
#AWS
Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems
Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain
This second edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. The book provides you with the skills you need to stay ahead in this rapidly evolving field.
Machine Learning Engineering with Python adopts an example-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized 'model factory' for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift.
Get hands-on with the latest in deployment architectures and discover methods for scaling your solutions. This edition delves deeper into all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques.
With a new chapter on deep learning, generative AI, and LLMOps, you'll learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You'll also explore AI assistants like GitHub Copilot to become more productive, and then understand the engineering considerations of working with deep learning.
This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you’re not a developer but want to manage or understand the product lifecycle of these systems, you’ll also find this book useful. This book assumes basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.
“What I love about this book is that it is very practical. This fantastic resource bridges the gap between theory and practice, offering a hands-on, Python-focused approach to ML engineering. Machine Learning Engineering with Python, Second Edition is your gateway to mastering the art of turning machine learning models into real-world applications.”
Adi Polak, Author of Scaling Machine Learning with Spark
Andrew Peter (Andy) McMahon is a machine learning engineer and data scientist with experience of working in, and leading, successful analytics and software teams. His expertise centers on building production-grade ML systems that can deliver value at scale. He is currently ML Engineering Lead at NatWest Group and was previously Analytics Team Lead at Aggreko.He has an undergraduate degree in theoretical physics from the University of Glasgow, as well as master's and Ph.D. degrees in condensed matter physics from Imperial College London. In 2019, Andy was named Data Scientist of the Year at the International Data Science Awards. He currently co-hosts the AI Right podcast, discussing hot topics in AI with other members of the Scottish tech scene.









