Vadim Smolyakov

#Machine
#Learning
#Algorithms
#ML
#EM
#ResNet
کتاب "Machine Learning Algorithms in Depth" یک راهنمای جامع برای درک عمیق الگوریتمهای یادگیری ماشین است. این کتاب بهطور خاص بر روی روشهای احتمالاتی تمرکز دارد و شامل تفسیرهای دقیق از الگوریتمهای بیزی مانند مونتکارلو و مدلهای مارکوف است. علاوه بر مباحث نظری، کتاب شامل پیادهسازیهای عملی الگوریتمها در پایتون همراه با توضیحات کد و نمودارهای آموزشی است. از جمله مباحث کلیدی کتاب میتوان به موارد زیر اشاره کرد:
وادیم اسمولیاکوف (Vadim Smolyakov) یک دانشمند داده در تیم تحقیق و توسعه امنیت سازمانی مایکروسافت است. او پیش از این دانشجوی دکترای هوش مصنوعی در MIT CSAIL بوده و در زمینههای استنتاج بیزی و یادگیری عمیق تحقیق کرده است. همچنین، قبل از پیوستن به مایکروسافت، در حوزه یادگیری ماشین برای تجارت الکترونیک فعالیت داشته است.
Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance.
Fully understanding how machine learning algorithms function is essential for any serious ML engineer. In Machine Learning Algorithms in Depth you’ll explore practical implementations of dozens of ML algorithms including:
• Monte Carlo Stock Price Simulation
• Image Denoising using Mean-Field Variational Inference
• EM algorithm for Hidden Markov Models
• Imbalanced Learning, Active Learning and Ensemble Learning
• Bayesian Optimization for Hyperparameter Tuning
• Dirichlet Process K-Means for Clustering Applications
• Stock Clusters based on Inverse Covariance Estimation
• Energy Minimization using Simulated Annealing
• Image Search based on ResNet Convolutional Neural Network
• Anomaly Detection in Time-Series using Variational Autoencoders
Machine Learning Algorithms in Depth dives into the design and underlying principles of some of the most exciting machine learning (ML) algorithms in the world today. With a particular emphasis on probabilistic algorithms, you’ll learn the fundamentals of Bayesian inference and deep learning. You’ll also explore the core data structures and algorithmic paradigms for machine learning. Each algorithm is fully explored with both math and practical implementations so you can see how they work and how they’re put into action.
About the technology
Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance. This book guides you from the core mathematical foundations of the most important ML algorithms to their Python implementations, with a particular focus on probability-based methods.
About the book
Machine Learning Algorithms in Depth dissects and explains dozens of algorithms across a variety of applications, including finance, computer vision, and NLP. Each algorithm is mathematically derived, followed by its hands-on Python implementation along with insightful code annotations and informative graphics. You’ll especially appreciate author Vadim Smolyakov’s clear interpretations of Bayesian algorithms for Monte Carlo and Markov models.
What's inside
• Monte Carlo stock price simulation
• EM algorithm for hidden Markov models
• Imbalanced learning, active learning, and ensemble learning
• Bayesian optimization for hyperparameter tuning
• Anomaly detection in time-series
About the reader
For machine learning practitioners familiar with linear algebra, probability, and basic calculus.
Table of Contents
PART 1- Introducing ML algorithms
1 Machine learning algorithms
2 Markov chain Monte Carlo
3 Variational inference
4 Software implementation
PART 2- Super vised learning
5 Classification algorithms
6 Regression algorithms
7 Selected supervised learning algorithms
PART 3- Unsuper vised learning
8 Fundamental unsupervised learning algorithms
9 Selected unsupervised learning algorithms
PART 4- Deep learning
10 Fundamental deep learning algorithms
11 Advanced deep learning algorithms
About the Author
Vadim Smolyakov is a data scientist in the Enterprise & Security DI R&D team at Microsoft. He is a former PhD student in AI at MIT CSAIL with research interests in Bayesian inference and deep learning. Prior to joining Microsoft, Vadim developed machine learning solutions in the e-commerce space.









