0
نام کتاب
Linear Algebra and Optimization for Machine Learning

A Textbook

Charu C. Aggarwal

Paperback668 Pages
PublisherSpringer
Edition2
LanguageEnglish
Year2026
ISBN9783031986185
1K
A2456
انتخاب نوع چاپ:
جلد سخت
864,000ت
0
جلد نرم
954,000ت(2 جلدی)
0
طلق پاپکو و فنر
974,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Algebra

#Linear_Algebra

#Machine_Learning

#computer_science

#mathematics

#data_science

توضیحات

This textbook is the second edition of the linear algebra and optimization book that was published in 2020. The exposition in this edition is greatly simplified as compared to the first edition. The second edition is enhanced with a large number of solved examples and exercises. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.


It is common for machine learning practitioners to pick up missing bits and pieces of linear algebra and optimization via “osmosis” while studying the solutions to machine learning applications. However, this type of unsystematic approach is unsatisfying because the primary focus on machine learning gets in the way of learning linear algebra and optimization in a generalizable way across new situations and applications. Therefore, we have inverted the focus in this book, with linear algebra/optimization as the primary topics of interest, and solutions to machine learning problems as the applications of this machinery. In other words, the book goes out of its way to teach linear algebra and optimization with machine learning examples. By using this approach, the book focuses on those aspects of linear algebra and optimization that are more relevant to machine learning, and also teaches the reader how to apply them in the machine learning context. As a side benefit, the reader will pick up knowledge of several fundamental problems in machine learning. At the end of the process, the reader will become familiar with many of the basic linear-algebra- and optimization-centric algorithms in machine learning. Although the book is not intended to provide exhaustive coverage of machine learning, it serves as a “technical starter” for the key models and optimization methods in machine learning. Even for seasoned practitioners of machine learning, a systematic introduction to fundamental linear algebra and optimization methodologies can be useful in terms of providing a fresh perspective.


The chapters of the book are organized as follows.

1-Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts.


2-Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to backpropagation in neural networks.

The primary audience for this textbook is graduate level students and professors. The secondary audience is industry. Advanced undergraduates might also be interested, and it is possible to use this book for the mathematics requirements of an undergraduate data science course.


Table of Contents

1 Linear Algebra and Optimization: An Introduction

2 Linear Transformations and Linear Systems

3 Eigenvectors and Diagonalizable Matrices

4 Optimization Basics: A Machine Learning View

5 Advanced Optimization Solutions

6 Constrained Optimization and Duality

7 Singular Value Decomposition

8 Matrix Factorization

9 The Linear Algebra of Similarity

10 The Linear Algebra of Graphs

11 Optimization in Computational Graphs

A Solutions to Odd-Numbered Exercises


Review

“Based on the topics covered and the excellent presentation, I would recommend Aggarwal's book over these other books for an advanced undergraduate or beginning graduate course on mathematics for data science.” (Brian Borchers, MAA Reviews, March 28, 2021)


“This book should be of interest to graduate students in engineering, applied mathematics, and other fields requiring an understanding of the mathematical underpinnings of machine learning.” (IEEE Control Systems Magazine, Vol. 40 (6), December, 2020)


About the Author

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. in Operations Research from the Massachusetts Institute of Technology in 1996. He has published more than 400 papers in refereed conferences and journals and has applied for or been granted more than 80 patents. He is author or editor of 19 books, including textbooks on data mining, neural networks, machine learning (for text), recommender systems, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several internal and external awards, including the EDBT Test-of-Time Award (2014), the IEEE ICDM Research Contributions Award (2015), and the ACM SIGKDD Innovation Award (2019). He has served as editor-in-chief of the ACM SIGKDD Explorations, and is currently serving as an editor-in-chief of the ACM Transactions on Knowledge Discovery from Data. He is a fellow of the SIAM, ACM, and the IEEE, for “contributions to knowledge discovery and data mining algorithms.”

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Machine Learning
1,042
Transformers for Machine Learning
511,000 تومان
Machine Learning
1,251
Machine Learning for Algorithmic Trading
1,326,000 تومان
Machine Learning
1,955
TensorFlow 2.0 Computer Vision Cookbook
991,000 تومان
Machine Learning
1,003
Machine Learning Crash Course for Engineers
738,000 تومان
Python
1,132
Python Machine Learning
1,266,000 تومان
Machine Learning
386
Building Machine Learning Systems with a Feature Store
948,000 تومان
Machine Learning
1,265
Introducing MLOps
391,000 تومان
Machine Learning
968
Learning Ray
499,000 تومان
Machine Learning
1,036
Practical Machine Learning with Rust
605,000 تومان
Machine Learning
812
Master Machine Learning Algorithms
366,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©