Design strategies, patterns, and best practices for large language model development
Ahmed Menshawy, Mahmoud Fahmy

#LLM
#ML
#AI
#GenAI
#RAG
#Data
#Blueprint
#Design_Patterns
🏢 ادغام مدلهای زبانی بزرگ (LLMs) در برنامههای سازمانی فصل تازهای از تحول دیجیتال را رقم میزند — جایی که تصمیمگیری هوشمندتر و عملیات کارآمدتر با قدرت هوش مصنوعی ممکن میشود.
📘 کتاب "LLMs in Enterprise" راهنمایی عملی برای پیادهسازی این فناوری در دنیای واقعی کسبوکارهاست. این کتاب با زبانی روشن و ساختاری دقیق، پیچیدگیهای استقرار LLM را ساده کرده و چارچوبی گامبهگام برای افزایش کارایی، دقت و مقیاسپذیری سیستمهای هوشمند سازمانی ارائه میدهد.
💡 در این کتاب میآموزید چگونه:
🧠 این کتاب برای چه کسانی است؟
برای پژوهشگران هوش مصنوعی و یادگیری ماشین که به دنبال کاربردهای عملی LLM هستند،
دانشمندان داده و مهندسان ML که بر توسعهی راهحلهای GenAI در مقیاس سازمانی تمرکز دارند،
معماران سازمانی و رهبران فنی که مسئول ادغام فناوریهای هوش مصنوعی در فرآیندهای کسبوکار هستند،
و توسعهدهندگانی که به دنبال ساخت برنامههای قدرتمند و مقیاسپذیر مبتنی بر GenAI میباشند.
Integrate large language models into your enterprise applications with advanced strategies that drive transformation
The integration of large language models (LLMs) into enterprise applications is transforming how businesses use AI to drive smarter decisions and efficient operations. LLMs in Enterprise is your practical guide to bringing these capabilities into real-world business contexts. It demystifies the complexities of LLM deployment and provides a structured approach for enhancing decision-making and operational efficiency with AI.
Starting with an introduction to the foundational concepts, the book swiftly moves on to hands-on applications focusing on real-world challenges and solutions. You’ll master data strategies and explore design patterns that streamline the optimization and deployment of LLMs in enterprise environments. From fine-tuning techniques to advanced inferencing patterns, the book equips you with a toolkit for solving complex challenges and driving AI-led innovation in business processes.
By the end of this book, you’ll have a solid grasp of key LLM design patterns and how to apply them to enhance the performance and scalability of your generative AI solutions.
This book is designed for a diverse group of professionals looking to understand and implement advanced design patterns for LLMs in their enterprise applications, including AI and ML researchers exploring practical applications of LLMs, data scientists and ML engineers designing and implementing large-scale GenAI solutions, enterprise architects and technical leaders who oversee the integration of AI technologies into business processes, and software developers creating scalable GenAI-powered applications.
About the Author
Ahmed Menshawy is the Vice President of AI Engineering at Mastercard. He leads the AI Engineering team to drive the development and operationalization of AI products, address a broad range of challenges and technical debts for ML pipelines deployment. He also leads a team dedicated to creating several AI accelerators and capabilities, including serving engines and feature stores, aimed at enhancing various aspects of AI engineering.
Mahmoud Fahmy is a Lead Machine Learning Engineer at Mastercard, specializing in the development and operationalization of AI products. His primary focus is on optimizing machine learning pipelines and navigating the intricate challenges of deploying models effectively for end customers.









