Master the art of engineering large language models from concept to production
Paul Iusztin, Maxime Labonne

#LLMs
#LLMOps
#IaC
#Large_language_models
#AWS
#Python
#RAG
با این راهنمای عملی وارد دنیای مدلهای زبانی بزرگ (LLM) شوید؛ از مفاهیم پایه تا پیادهسازی اپلیکیشنهای پیشرفته با بهرهگیری از بهترین روشهای LLMOps.
هوش مصنوعی با سرعتی چشمگیر در حال پیشرفت است و مدلهای زبانی بزرگ (LLMها) در مرکز این تحول قرار دارند. این کتاب با تمرکز بر سناریوهای واقعی، طراحی، آموزش و استقرار LLMها را با بهرهگیری از اصول MLOps به شما آموزش میدهد. در این راهنما، ساخت یک مدل LLM-Twin با رویکردی مقرونبهصرفه، مقیاسپذیر و ماژولار آموزش داده میشود — فراتر از نوتبوکهای ایزوله، با هدف توسعه سیستمهایی در سطح تولید واقعی.
در طول کتاب، با مهندسی داده، ریزتنظیم تحت نظارت (supervised fine-tuning) و استقرار مدلها بهصورت عملی آشنا خواهید شد. تمرین عملی ساخت LLM Twin به شما کمک میکند تا مؤلفههای MLOps را در پروژههای خود پیادهسازی کنید. همچنین با پیشرفتهای نوینی همچون بهینهسازی استنتاج، همراستاسازی ترجیحی و پردازش دادهی بلادرنگ آشنا میشوید — این کتاب را به منبعی ضروری برای استفاده عملی از LLMها تبدیل کرده است.
در پایان، شما توانایی استقرار مدلهای LLM را خواهید داشت که مسائل واقعی را با پاسخگویی بلادرنگ و در دسترسپذیری بالا حل میکنند. چه تازهکار باشید چه متخصص باتجربه در حوزه هوش مصنوعی، این کتاب ابزارها و تکنیکهای کاربردی برای درک عمیقتر و پیادهسازی مؤثر LLMها را در اختیارتان میگذارد.
Step into the world of LLMs with this practical guide that takes you from the fundamentals to deploying advanced applications using LLMOps best practices
“This book is instrumental in making sure that as many people as possible can not only use LLMs but also adapt them, fine-tune them, quantize them, and make them efficient enough to deploy in the real world.”- Julien Chaumond, CTO and Co-founder, Hugging Face
This LLM book provides practical insights into designing, training, and deploying LLMs in real-world scenarios by leveraging MLOps' best practices. The guide walks you through building an LLM-powered twin that’s cost-effective, scalable, and modular. It moves beyond isolated Jupyter Notebooks, focusing on how to build production-grade end-to-end LLM systems.
Throughout this book, you will learn data engineering, supervised fine-tuning, and deployment. The hands-on approach to building the LLM twin use case will help you implement MLOps components in your own projects. You will also explore cutting-edge advancements in the field, including inference optimization, preference alignment, and real-time data processing, making this a vital resource for those looking to apply LLMs in their projects.
This book is for AI engineers, NLP professionals, and LLM engineers looking to deepen their understanding of LLMs. Basic knowledge of LLMs and the Gen AI landscape, Python and AWS is recommended. Whether you are new to AI or looking to enhance your skills, this book provides comprehensive guidance on implementing LLMs in real-world scenarios.
Paul Iusztin is a senior ML and MLOps engineer at Metaphysic, a leading GenAI platform, serving as one of their core engineers in taking their deep learning products to production. Along with Metaphysic, with over seven years of experience, he built GenAI, Computer Vision and MLOps solutions for CoreAI, Everseen, and Continental. Paul's determined passion and mission are to build data-intensive AI/ML products that serve the world and educate others about the process. As the Founder of Decoding ML, a channel for battle-tested content on learning how to design, code, and deploy production-grade ML, Paul has significantly enriched the engineering and MLOps community. His weekly content on ML engineering and his open-source courses focusing on end-to-end ML life cycles, such as Hands-on LLMs and LLM Twin, testify to his valuable contributions.
Maxime Labonne is a Senior Staff Machine Learning Scientist at Liquid AI, serving as the head of post-training. He holds a Ph.D. in Machine Learning from the Polytechnic Institute of Paris and is recognized as a Google Developer Expert in AI/ML. An active blogger, he has made significant contributions to the open-source community, including the LLM Course on GitHub, tools such as LLM AutoEval, and several state-of-the-art models like NeuralBeagle and Phixtral. He is the author of the best-selling book “Hands-On Graph Neural Networks Using Python,” published by Packt.









