نام کتاب
LLM Design Patterns

A Practical Guide to Building Robust and Efficient AI Systems

Ken Huang

Paperback534 Pages
PublisherPackt
Edition1
LanguageEnglish
Year2025
ISBN9781836207030
213
A6188
انتخاب نوع چاپ:
جلد سخت
808,000ت
0
جلد نرم
908,000ت(2 جلدی)
0
طلق پاپکو و فنر
928,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:سیاه و سفید
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#LLM

#AI

#Design_Patterns

#RAG

#RLHF

توضیحات

Explore reusable design patterns, including data-centric approaches, model development, model fine-tuning, and RAG for LLM application development and advanced prompting techniques


Key Features

  • Learn comprehensive LLM development, including data prep, training pipelines, and optimization
  • Explore advanced prompting techniques, such as chain-of-thought, tree-of-thought, RAG, and AI agents
  • Implement evaluation metrics, interpretability, and bias detection for fair, reliable models


Book Description

This practical guide for AI professionals enables you to build on the power of design patterns to develop robust, scalable, and efficient large language models (LLMs). Written by a global AI expert and popular author driving standards and innovation in Generative AI, security, and strategy, this book covers the end-to-end lifecycle of LLM development and introduces reusable architectural and engineering solutions to common challenges in data handling, model training, evaluation, and deployment.


You’ll learn to clean, augment, and annotate large-scale datasets, architect modular training pipelines, and optimize models using hyperparameter tuning, pruning, and quantization. The chapters help you explore regularization, checkpointing, fine-tuning, and advanced prompting methods, such as reason-and-act, as well as implement reflection, multi-step reasoning, and tool use for intelligent task completion. The book also highlights Retrieval-Augmented Generation (RAG), graph-based retrieval, interpretability, fairness, and RLHF, culminating in the creation of agentic LLM systems.

By the end of this book, you’ll be equipped with the knowledge and tools to build next-generation LLMs that are adaptable, efficient, safe, and aligned with human values.


What you will learn

  • Implement efficient data prep techniques, including cleaning and augmentation
  • Design scalable training pipelines with tuning, regularization, and checkpointing
  • Optimize LLMs via pruning, quantization, and fine-tuning
  • Evaluate models with metrics, cross-validation, and interpretability
  • Understand fairness and detect bias in outputs
  • Develop RLHF strategies to build secure, agentic AI systems


Who this book is for

This book is essential for AI engineers, architects, data scientists, and software engineers responsible for developing and deploying AI systems powered by large language models. A basic understanding of machine learning concepts and experience in Python programming is a must.


Table of Contents

Part 1: Introduction and Data Preparation

Chapter 1: Introduction to LLM Design Patterns

Chapter 2: Data Cleaning for LLM Training

Chapter 3: Data Augmentation

Chapter 4: Handling large Datasets for llM Training

Chapter 5: Data Versioning

Chapter 6: Dataset Annotation and labeling

Part 2: Training and Optimization of large language Models

Chapter 7: Training Pipeline

Chapter 8: Hyperparameter Tuning

Chapter 9: Regularization

Chapter 10: Checkpointing and Recovery

Chapter 11 : Fine-Tuning

Chapter 12: Model Pruning

Chapter 13: Quantization

Part 3: Evaluation and Interpretation of large language Models

Chapter 14: Evaluation Metrics

Chapter 15: Cross-Validation

Chapter 16: lnterpretability

Chapter 17: Fairness and Bias Detection

Chapter 18: Adversarial Robustness

Chapter 19: Reinforcement learning from Human Feedback

Part 4: Advanced Prompt Engineering Techniques

Chapter 20: Chain-of-Thought Prompting

Chapter 21 : Tree-of-Thoughts Prompting

Chapter 22: Reasoning and Acting

Chapter 23: Reasoning WithOut Observation

Chapter 24: Reflection Techniques

Chapter 25: Automatic Multi-Step Reasoning and Tool Use

Part 5: Retrieval and Knowledge Integration in large language Models

Chapter 26: Retrieval-Augmented Generation

Chapter 27: Graph-Based RAG

Chapter 28: Advanced RAG

Chapter 29: Evaluating RAG Systems

Chapter 30: Agentic Patterns



About the Author

Ken Huang is a renowned AI expert, serving as co-chair of AI Safety Working Groups at Cloud Security Alliance and the AI STR Working Group at World Digital Technology Academy under the UN Framework. As CEO of DistributedApps, he provides specialized GenAI consulting.A key contributor to OWASP's Top 10 Risks for LLM Applications and NIST's Generative AI Working Group, Huang has authored influential books including Beyond AI (Springer, 2023), Generative AI Security (Springer, 2024), and Agentic AI: Theories and Practice (Springer, 2025) He's a global speaker at prestigious events such as Davos WEF, ACM, IEEE, and RSAC. Huang is also a member of the OpenAI Forum and project leader for the OWASP AI Vulnerability Scoring System project.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
LLM
408
Essential Guide to LLMOps
369,000 تومان
LLM
1,301
Build a Large Language Model
567,000 تومان
LLM
969
Hands-On Large Language Models
631,000 تومان
LLM
129
Essential GraphRAG
356,000 تومان
LLM
914
LLMs in Enterprise
942,000 تومان
LLM
901
Building LLM Powered Applications
606,000 تومان
Data Analysis
272
Data Analysis with LLMs
417,000 تومان
LLM
103
A Simple Guide to Retrieval Augmented Generation
442,000 تومان
Artificial intelligence
495
Beyond Vibe Coding
441,000 تومان
LLM
532
LLMs in Production
662,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©