نام کتاب
Interpretable AI

Building explainable machine learning systems

Ajay Thampi

Paperback330 Pages
PublisherManning
Edition1
LanguageEnglish
Year2022
ISBN9781617297649
946
A3146
انتخاب نوع چاپ:
جلد سخت
583,000ت
0
جلد نرم
523,000ت
0
طلق پاپکو و فنر
533,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#AI

#GDPR

#Model_agnostic_methods

توضیحات

AI doesn’t have to be a black box. These practical techniques help shine a light on your model’s mysterious inner workings. Make your AI more transparent, and you’ll improve trust in your results, combat data leakage and bias, and ensure compliance with legal requirements.


In Interpretable AI, you will learn:

  • Why AI models are hard to interpret
  • Interpreting white box models such as linear regression, decision trees, and generalized additive models
  • Partial dependence plots, LIME, SHAP and Anchors, and other techniques such as saliency mapping, network dissection, and representational learning
  • What fairness is and how to mitigate bias in AI systems
  • Implement robust AI systems that are GDPR-compliant


Interpretable AI opens up the black box of your AI models. It teaches cutting-edge techniques and best practices that can make even complex AI systems interpretable. Each method is easy to implement with just Python and open source libraries. You’ll learn to identify when you can utilize models that are inherently transparent, and how to mitigate opacity when your problem demands the power of a hard-to-interpret deep learning model.


About the technology

It’s often difficult to explain how deep learning models work, even for the data scientists who create them. Improving transparency and interpretability in machine learning models minimizes errors, reduces unintended bias, and increases trust in the outcomes. This unique book contains techniques for looking inside “black box” models, designing accountable algorithms, and understanding the factors that cause skewed results.


About the book

Interpretable AI teaches you to identify the patterns your model has learned and why it produces its results. As you read, you’ll pick up algorithm-specific approaches, like interpreting regression and generalized additive models, along with tips to improve performance during training. You’ll also explore methods for interpreting complex deep learning models where some processes are not easily observable. AI transparency is a fast-moving field, and this book simplifies cutting-edge research into practical methods you can implement with Python.


What's inside

  • Techniques for interpreting AI models
  • Counteract errors from bias, data leakage, and concept drift
  • Measuring fairness and mitigating bias
  • Building GDPR-compliant AI systems


About the reader

For data scientists and engineers familiar with Python and machine learning.


Table of Contents

PART 1 INTERPRETABILITY BASICS

1 Introduction

2 White-box models

PART 2 INTERPRETING MODEL PROCESSING

3 Model-agnostic methods: Global interpretability

4 Model-agnostic methods: Local interpretability

5 Saliency mapping

PART 3 INTERPRETING MODEL REPRESENTATIONS

6 Understanding layers and units

7 Understanding semantic similarity

PART 4 FAIRNESS AND BIAS

8 Fairness and mitigating bias

9 Path to explainable AI


Review

"A sound introduction for practitioners to the exciting field of interpretable AI." 

—Pablo Roccatagliata, Torcuato Di Tella University 


"Ajay Thampi explains in an easy-to-understand way the importance of interpretability in machine learning." 

—Ariel Gamiño, Athenahealth 


"Effectively demystifies interpretable AI for novice and pro alike." —Vijayant Singh, Razorpay 


"Concrete examples help the understanding and building of interpretable AI systems." 

—Izhar Haq, Long Island University



About the Author

Ajay Thampi is a machine learning engineer at a large tech company primarily focused on responsible AI and fairness. He holds a PhD and his research was focused on signal processing and machine learning. He has published papers at leading conferences and journals on reinforcement learning, convex optimization, and classical machine learning techniques applied to 5G cellular networks.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Artificial intelligence
934
Artificial Intelligence in Digital Holographic Imaging
601,000 تومان
Artificial intelligence
273
Build Financial Software with Generative AI (From Scratch)
638,000 تومان
Artificial intelligence
278
Azure OpenAI Essentials
565,000 تومان
Artificial intelligence
1,762
Artificial Intelligence (Global Edition)
1,998,000 تومان
Artificial intelligence
413
Generative AI Application Integration Patterns
401,000 تومان
Artificial intelligence
919
DeepFakes
344,000 تومان
Data Analysis
526
Starting Data Analytics with Generative AI and Python
559,000 تومان
Artificial intelligence
746
Architectures for the Intelligent AI-Ready Enterprise
881,000 تومان
Artificial intelligence
874
Artificial Intelligence, Game Theory and Mechanism Design in Politics
404,000 تومان
Artificial intelligence
1,172
Deep Learning and XAI Techniques for Anomaly Detection
400,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©