نام کتاب
Hyperbolic Knot Theory

Jessica S. Purcell

Paperback392 Pages
PublisherAmerican Mathematical Society
Edition1
LanguageEnglish
Year2020
ISBN9781470454999
232
A6009
انتخاب نوع چاپ:
جلد سخت
652,000ت
0
جلد نرم
592,000ت
0
طلق پاپکو و فنر
602,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:سیاه و سفید
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Knot_Theory

#Geometry

#Polyhedra

#A-Polynomial

توضیحات

This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date. The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.


Review

There are many existing books on hyperbolic geometry and on knot theory taken separately, but to my knowledge, this is the first that substantially focuses on the two fields together. The combination benefits each of the constituents. This book will be useful both as an introduction and as a reference for those interested in either (or both!) topics. --Henry Segerman, Oklahoma State University


Table of Contents

Chapter 0. A Brief Introduction to Hyperbolic Knots

0.1. An introduction to knot theory

0.2. Problems in knot theory

0.3. Exercises

Cart 1 . Foundations of Hyperbolic Structures

Chapter 1. Decomposition of the Figure-8 Knot

Chapter 2. Calculating in Hyperbolic Space

Chapter 3. Geometric Structures on Manifolds

Chapter 4. Hyperbolic Structures and Triangulations

Chapter 5. Discrete Groups and the Thick-Thin Decomposition

Chapter 6. Completion and Dehn Filling

Cart 2. Tools, Techniques, and Families of Examples

Chapter 7. Twist Knots and Augmented links

Chapter 8. Essential Surfaces

Chapter 9. Volume and Angle Structures

Chapter 10. Two-Bridge Knots and links

Chapter 11. Alternating Knots and links

Chapter 12. The Geometry of Embedded Surfaces

Cart 3 . Hyperbolic Knot Invariants

Chapter 13. Estimating Volume

Chapter 14. Ford Domains and Canonical Polyhedra

Chapter 15. Algebraic Sets and the A-Polynomial

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
جبر و هندسه
191
Algebraic Number Theory
975,000 تومان
جبر و هندسه
123
Putnam and Beyond
1,277,000 تومان
جبر و هندسه
1,022
A First Course in Abstract Algebra
744,000 تومان
ریاضی
1,061
Introduction to Linear Algebra
494,000 تومان
جبر و هندسه
741
Category Theory
521,000 تومان
جبر و هندسه
917
An Introduction to the Language of Category Theory
352,000 تومان
جبر و هندسه
743
Algebra in Action
1,088,000 تومان
جبر و هندسه
718
Introduction to Mathematical Structures and Proofs
610,000 تومان
جبر و هندسه
393
Algebras and Representation Theory
498,000 تومان
جبر و هندسه
1,015
Hyperbolic Geometry
477,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©