نام کتاب
Hands-On Gradient Boosting with XGBoost and scikit-learn

 Perform accessible machine learning and extreme gradient boosting with Python

Corey Wade

Paperback312 Pages
PublisherPackt
Edition1
LanguageEnglish
Year2020
ISBN9781839218354
1K
A3508
انتخاب نوع چاپ:
جلد سخت
564,000ت
0
جلد نرم
504,000ت
0
طلق پاپکو و فنر
514,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:سیاه و سفید
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Gradient_Boosting

#XGBoost

#scikit_learn

#Machine_learning

#Python

#XGBoost

توضیحات


Get to grips with building robust XGBoost models using Python and scikit-learn for deployment


Key Features

  • Get up and running with machine learning and understand how to boost models with XGBoost in no time
  • Build real-world machine learning pipelines and fine-tune hyperparameters to achieve optimal results
  • Discover tips and tricks and gain innovative insights from XGBoost Kaggle winners


Book Description

XGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently.


The book introduces machine learning and XGBoost in scikit-learn before building up to the theory behind gradient boosting. You'll cover decision trees and analyze bagging in the machine learning context, learning hyperparameters that extend to XGBoost along the way. You'll build gradient boosting models from scratch and extend gradient boosting to big data while recognizing speed limitations using timers. Details in XGBoost are explored with a focus on speed enhancements and deriving parameters mathematically. With the help of detailed case studies, you'll practice building and fine-tuning XGBoost classifiers and regressors using scikit-learn and the original Python API. You'll leverage XGBoost hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like building non-correlated ensembles, stacking models, and preparing models for industry deployment using sparse matrices, customized transformers, and pipelines.


By the end of the book, you'll be able to build high-performing machine learning models using XGBoost with minimal errors and maximum speed.


What you will learn

  • Build gradient boosting models from scratch
  • Develop XGBoost regressors and classifiers with accuracy and speed
  • Analyze variance and bias in terms of fine-tuning XGBoost hyperparameters
  • Automatically correct missing values and scale imbalanced data
  • Apply alternative base learners like dart, linear models, and XGBoost random forests
  • Customize transformers and pipelines to deploy XGBoost models
  • Build non-correlated ensembles and stack XGBoost models to increase accuracy


Who this book is for

This book is for data science professionals and enthusiasts, data analysts, and developers who want to build fast and accurate machine learning models that scale with big data. Proficiency in Python, along with a basic understanding of linear algebra, will help you to get the most out of this book.


Table of Contents

  1. Machine Learning Landscape
  2. Decision Trees in Depth
  3. Bagging with Random Forests
  4. From Gradient Boosting to XGBoost
  5. XGBoost Unveiled
  6. XGBoost Hyperparameters
  7. Discovering Exoplanets with XGBoost
  8. XGBoost Alternative Base Learners
  9. XGBoost Kaggle Masters
  10. XGBoost Model Deployment


About the Author

Corey Wade, M.S. Mathematics, M.F.A. Writing and Consciousness, is the founder and director of Berkeley Coding Academy, where he teaches machine learning and AI to teens from all over the world. Additionally, Corey chairs the Math Department at the Independent Study Program of Berkeley High School, where he teaches programming and advanced math. His additional experience includes teaching natural language processing with Hello World, developing data science curricula with Pathstream, and publishing original statistics (3NG) and machine learning articles with Towards Data Science, Springboard, and Medium. Corey is co-author of the Python Workshop, also published by Packt.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
More Books
1,029
Mastering Adobe Photoshop Elements 2023
881,000 تومان
More Books
2,065
Raspberry Pi and MQTT Essentials
460,000 تومان
More Books
894
Kill It with Fire
433,000 تومان
More Books
919
Implementing Service Level Objectives
605,000 تومان
More Books
991
Visual Studio 2019 Tricks and Techniques
662,000 تومان
More Books
901
Beginning Ansible Concepts and Application
486,000 تومان
More Books
1,014
Clip Studio Paint by Example
986,000 تومان
More Books
598
Arduino Software Internals
593,000 تومان
More Books
497
Applied Predictive Modeling
975,000 تومان
More Books
557
Interaction of Color
391,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©