نام کتاب
Graph Representation Learning

William L. Hamilton

Paperback161 Pages
PublisherMorgan & Claypool
Edition1
LanguageEnglish
Year2020
ISBN9781681739632
891
A2833
انتخاب نوع چاپ:
جلد سخت
351,000ت
0
جلد نرم
291,000ت
0
طلق پاپکو و فنر
301,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Graph

#Representation

#GNN

#RGCN

#methodological

#networks

#3D_vision

#deep_learning

#graph_data

توضیحات

ABSTRACT Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation.


These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning.


It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis.


Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.


Contents

1. Introduction

2. Background and Traditional Approaches

PART I Node Embeddings

3. Neighborhood Reconstruction Methods

4. Multi-Relational Data and Knowledge Graphs

PART II Graph Neural Networks

5. The Graph Neural Network Model

6. Graph Neural Networks in Practice

7. Theoretical Motivations

PART III Generative Graph Models

8. Traditional Graph Generation Approaches

9. Deep Generative Models

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Deep Learning
462
Deep Learning for Natural Language Processing
420,000 تومان
Deep Learning
1,002
Deep Learning
427,000 تومان
Deep Learning
1,092
Advanced Deep Learning with TensorFlow 2 and Keras
773,000 تومان
Data
842
Synthetic Data for Deep Learning
365,000 تومان
Python
939
Applied Recommender Systems with Python
387,000 تومان
NLP
959
Deep Learning for Natural Language Processing
426,000 تومان
Data
920
Modern Deep Learning for Tabular Data
1,118,000 تومان
Deep Learning
981
Fundamentals of Deep Learning
521,000 تومان
Deep Learning
926
Deep Learning
1,031,000 تومان
Deep Learning
1,005
Practical Deep Learning
844,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©