Enterprise Generative AI Systems and Agents
Ayo Adedeji, Lavi Nigam, Sarita A. Joshi, and Stephanie Gervasi

#GenAI
#Google_Cloud
#Python
#AI_engineering
🚀 توی فضای امروز AI، موفقیت فقط به این نیست که بلد باشی با مدلهای زبانی بزرگ (LLM) چت کنی یا بهشون پرامپت بدی؛ چالش اصلی اینه که بتونی این مدلها رو جوری توی سیستمهای هوشمند سازماندهی کنی که مقیاسپذیر، امن و از نظر هزینهای به صرفه باشن. کتاب GenAI on Google Cloud دقیقاً همون نقشه راهیه که برای پر کردن این شکاف لازم داری. فرقی نمیکنه مهندس ML باشی یا مدیر ارشد یک سازمان؛ این کتاب یه برنامه عملی بهت میده تا بتونی سیستمهای مبتنی بر Agent (نمایندههای هوشمند) رو از مرحله پروتوتایپ به تولید واقعی (Production) برسونی. نویسندههای این کتاب خودشون تهِ خطِ AgentOps، مهندسی داده و زیرساخت GenAI هستن و تجربیات میدانیشون رو با مثالهای واقعی و فریمورکهای تست شده باهات به اشتراک میذارن.
✨ ویژگیهای کلیدی
• پر کردن شکاف تولید: با استفاده از فریمورکهای استقرار سیستماتیک، مشکلاتی که باعث میشه ۹۰٪ پروژههای AI به مرحله تولید نرسن رو حل میکنه.
• مدیریت پیچیدگیهای AgentOps: ارائه راهنمای عملی برای ارکستریشن، ارزیابی و اخلاق در هوش مصنوعی.
• ساخت سیستمهای چندوجهی: یاد میگیری چطور با معماریهای تست شده، ایجنتهایی بسازی که متن، تصویر و ویدیو رو میفهمن.
• بهینهسازی برای مقیاس بزرگ: استراتژیهایی برای مدیریت هزینه، تنظیم عملکرد و مانیتورینگ سیستم در محیط واقعی.
🎯 این کتاب برای چه کسانی نوشته شده؟
• مهندسان ML و AI که میخوان از مدلهای سنتی به سمت خطلولههای پیچیده GenAI حرکت کنن.
• تیمهای داده که قصد دارن از تحلیلهای معمولی به سمت بینشهای قدرت گرفته از AI برن.
• توسعهدهندگان نرمافزار (مسلط به پایتون) که میخوان وارد دنیای ساخت اپلیکیشنهای AI-first بشن.
• مدیران محصول و لیدرهای فنی که مسئول استراتژی و پیادهسازی AI توی سازمانشون هستن.
🛠️ پیشنیازها
• تسلط نسبی به برنامهنویسی پایتون.
• درک مفاهیم پایه یادگیری ماشین.
• آشنایی اولیه با مفاهیم Cloud (البته الزامی نیست، چون توی طول مسیر یاد میگیری).
📑 فهرست مطالب
✍️ درباره نویسندهها
• آیو آددجی (Ayo Adedeji): مهندس ارشد گوگل کلود که تخصصش تبدیل تکنولوژیهای پیچیده AI به راهکارهای عملی برای برنامهنویسهاست.
• لاوی نیگام (Lavi Nigam): مهندس ML در گوگل که روی دموکراتیزه کردن AI و آوردن مدل Gemini به اکوسیستم Vertex AI تمرکز داره.
• ساریتا جوشی (Sarita Joshi): مهندس AI/ML در گوگل کلود با سابقه مدیریت توی آمازون (AWS) که تخصصش پیادهسازی AI در حوزه سلامت هست.
• استفانی جروایزی (Stephanie Gervasi): دکترای دینامیک بیماریهای عفونی و مهندس ارشد گوگل که تمرکزش روی استراتژی داده و هوش مصنوعی مسئولانه (Responsible AI) هست.
In today's AI landscape, success depends not just on prompting large language models but on orchestrating them into intelligent systems that are scalable, compliant, and cost-effective. GenAI on Google Cloud is your hands-on guide to bridging that gap. Whether you're an ML engineer or an enterprise leader, this book offers a practical game plan for taking agentic systems from prototype to production.
Written by practitioners with deep experience in AgentOps, data engineering, and GenAI infrastructure, this guide takes you through real-world workflows from data prep and deployment to orchestration and integration. With concrete examples, field-tested frameworks, and honest insights, you'll learn how to build agentic systems that deliver measurable business value.
Table of Contents
Chapter 1. The Challenge of Generative AI Application Development
Chapter 2. Data Readiness and Accessibility
Chapter 3. Building a Multimodal Agent with the Agent Development Kit (ADK)
Chapter 4. Orchestrating Intelligent Agent Teams
Chapter 5. Evaluation and Optimization Strategies
Chapter 6. Tuning and Infrastructure
Chapter 7. MLOps for Production-Ready AI and Agentic Systems
Chapter 8. The AI and Agentic Maturity Framework
Our Approach
We believe in learning by doing. Throughout this book, we provide code examples that you can run and adapt to your specific needs. We focus on practical implementations rather than theoretical abstractions, though we provide enough theory to ensure that you understand why certain approaches work better than others.
We’ve chosen to write this book with our individual voices rather than aiming for a seamless narrative. As you read, you’ll hear from each of us directly, sharing our specific expertise and experiences. We believe this approach makes the content more authentic and allows us to connect with you on a more personal level.
Who This Book Is For
This book is designed for several key audiences:
While we assume familiarity with Python programming and basic machine learning concepts, we’ve structured the content to be accessible to readers with varying levels of expertise. Some familiarity with Google Cloud and Vertex AI is beneficial but not a prerequisite.
Prerequisites
To get the most out of this book, you should have:
If you’re new to some of these areas, don’t worry—we provide references and explanations where needed, and the hands-on approach means you’ll learn as you go.
Ayo Adedeji is a Senior Developer Relations Engineer on Google Cloud's AI Platform team and specializes in bridging advanced AI technologies with practical developer solutions. With a background as an ML Engineer in healthcare, Ayo’s expertise spans computational biology, big data processing, and foundation models. He holds engineering degrees from Stanford and Johns Hopkins and is passionate about helping developers across industries harness the power of Google Cloud to build innovative, responsible AI solutions.
Lavi Nigam is a Machine Learning Engineer and AI/ML Advocate at Google, passionate about democratizing AI and making it accessible to all. He currently leads the charge in bringing Gemini, Google's cutting-edge generative AI model, to developers worldwide through the Google Cloud Vertex AI ecosystem. In addition, he is focused on building scalable LLMOps and Generative AI Agents design patterns to help enterprises efficiently use, manage, and deploy these powerful models. His deep understanding of MLOps and Google Cloud's infrastructure empowers him to guide businesses in building robust, scalable, and production-ready AI systems. He is a recognized thought leader in the field, named one of the "40 Under 40 Data Scientists" by Analytics India Magazine.
Sarita Joshi, an AI/ML Engineer at Google Cloud, Senior IEEE member, empowers healthcare organizations to achieve transformative outcomes with AI. Her expertise is built on years of leading AI initiatives at Google and Amazon Web Services, where she served as Senior Science Manager and spearheaded customer transformations. With a background spanning consulting, R&D, and product engineering at industry giants like Amazon, Accenture, and Philips Healthcare, Sarita brings a unique blend of technical acumen and strategic vision. Her contributions extend to the research community through speaking engagements and peer review work at leading AI conferences such as ACM, NeurIPS, AAAI, and IEEE. Sarita holds a Master's degree in Computer Science from Northeastern University, equipping her with the knowledge and experience to guide others in navigating the complexities of AI in healthcare.
Stephanie Gervasi is a Senior Customer Engineer in AI/ML with Google Cloud. Steph has worked in academia, industry, and in the non-profit sector to imagine, build, and deploy AI/ML solutions. She has managed and led strategy development for Data Science and Predictive Analytics teams and created the first Responsible AI Playbook and Technical Toolkit for Fair AI at a national health payer organization. Steph has given local and international talks on AI/ML and has over 25 peer-reviewed publications, including collaborative research papers with academic institutions such as MIT and the University of Pennsylvania. Steph received a PhD in Infectious Disease Dynamics from Oregon State University and a Master’s in Ecological Sciences from the University of Michigan.









