نام کتاب
Foundations of Hyperbolic Manifolds

John G. Ratcliffe

Paperback812 Pages
PublisherSpringer
Edition3
LanguageEnglish
Year2019
ISBN9783030315962
358
A5741
انتخاب نوع چاپ:
جلد سخت
1,114,000ت
0
جلد نرم
1,214,000ت(2 جلدی)
0
طلق پاپکو و فنر
1,234,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:سیاه و سفید
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Hyperbolic_Manifolds

#Mathematics

#3-Manifolds

#Geometry

توضیحات

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This third edition greatly expands upon the second with an abundance of additional content, including a section dedicated to arithmetic hyperbolic groups. Over 40 new lemmas, theorems, and corollaries feature, along with more than 70 additional exercises. Color adds a new dimension to figures throughout.


The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincaré’s fundamental polyhedron theorem.The exposition is at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading this book, the reader will have the necessary background to study the current research on hyperbolic manifolds.



From reviews of the second edition:

Designed to be useful as both textbook and a reference, this book renders a real service to the mathematical community by putting together the tools and prerequisites needed to enter the territory of Thurston’s formidable theory of hyperbolic 3-manifolds […] Every chapter is followed by historical notes, with attributions to the relevant literature, both of the originators of the idea present in the chapter and of modern presentation thereof. Victor V. Pambuccian, Zentralblatt MATH, Vol. 1106 (8), 2007



Table of Contents

CHAPTER 1: Euclidean Geometry

CHAPTER 2: Spherical Geometry

CHAPTER 3: Hyperbolic Geometry

CHAPTER 4: Inversive Geometry

CHAPTER 5: lsometries of Hyperbolic Space

CHAPTER 6: Geometry of Discrete Groups

CHAPTER 7: Classical Discrete Groups

CHAPTER 8: Geometric Manifolds

CHAPTER 9: Geometric Surfaces

CHAPTER 10: Hyperbolic 3-Manifolds

CHAPTER 11: Hyperbolic n-manifolds

CHAPTER 12: Geometrically Finite n-manifolds

CHAPTER 13: Geometric Orbifolds


About the Author

John G. Ratcliffe is Professor of Mathematics at Vanderbilt University. His research interests range from low-dimensional topology and hyperbolic manifolds to cosmology.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
جبر و هندسه
939
Introduction to Conformal Field Theory
463,000 تومان
جبر و هندسه
232
Manifolds, Sheaves, and Cohomology
567,000 تومان
جبر و هندسه
172
Commutative Algebra
1,218,000 تومان
جبر و هندسه
951
Introduction to Applied Linear Algebra
684,000 تومان
ریاضی
1,120
Linear Algebra
497,000 تومان
ریاضی
1,045
Advanced Linear Algebra
901,000 تومان
جبر و هندسه
215
An Introduction to Differentiable Manifolds and Riemannian Geometry
644,000 تومان
ریاضی
1,061
Introduction to Linear Algebra
494,000 تومان
جبر و هندسه
405
Geometry and Spectra of Compact Riemann Surfaces
681,000 تومان
جبر و هندسه
535
Linear Algebra and Its Applications
1,302,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©