0
نام کتاب
Ensemble Methods for Machine Learning

Gautam Kunapuli 

Paperback354 Pages
PublisherManning
Edition1
LanguageEnglish
Year2023
ISBN9781617297137
971
A3510
انتخاب نوع چاپ:
جلد سخت
675,000ت
0
جلد نرم
595,000ت
0
طلق پاپکو و فنر
605,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Machine_Learning

#ML

#Hype

#hallelujah

توضیحات


Ensemble machine learning combines the power of multiple machine learning approaches, working together to deliver models that are highly performant and highly accurate.


Inside Ensemble Methods for Machine Learning you will find:

  • Methods for classification, regression, and recommendations
  • Sophisticated off-the-shelf ensemble implementations
  • Random forests, boosting, and gradient boosting
  • Feature engineering and ensemble diversity
  • Interpretability and explainability for ensemble methods


Ensemble machine learning trains a diverse group of machine learning models to work together, aggregating their output to deliver richer results than a single model. Now in Ensemble Methods for Machine Learning you’ll discover core ensemble methods that have proven records in both data science competitions and real-world applications. Hands-on case studies show you how each algorithm works in production. By the time you're done, you'll know the benefits, limitations, and practical methods of applying ensemble machine learning to real-world data, and be ready to build more explainable ML systems.



About the Technology

Automatically compare, contrast, and blend the output from multiple models to squeeze the best results from your data. Ensemble machine learning applies a “wisdom of crowds” method that dodges the inaccuracies and limitations of a single model. By basing responses on multiple perspectives, this innovative approach can deliver robust predictions even without massive datasets.


About the Book

Ensemble Methods for Machine Learning teaches you practical techniques for applying multiple ML approaches simultaneously. Each chapter contains a unique case study that demonstrates a fully functional ensemble method, with examples including medical diagnosis, sentiment analysis, handwriting classification, and more. There’s no complex math or theory—you’ll learn in a visuals-first manner, with ample code for easy experimentation!


What’s Inside

  • Bagging, boosting, and gradient boosting
  • Methods for classification, regression, and retrieval
  • Interpretability and explainability for ensemble methods
  • Feature engineering and ensemble diversity


About the Reader

For Python programmers with machine learning experience.


About the Author

Gautam Kunapuli has over 15 years of experience in academia and the machine learning industry.


Table of Contents

PART 1 - THE BASICS OF ENSEMBLES

1 Ensemble methods: Hype or hallelujah?

PART 2 - ESSENTIAL ENSEMBLE METHODS

2 Homogeneous parallel ensembles: Bagging and random forests

3 Heterogeneous parallel ensembles: Combining strong learners

4 Sequential ensembles: Adaptive boosting

5 Sequential ensembles: Gradient boosting

6 Sequential ensembles: Newton boosting

PART 3 - ENSEMBLES IN THE WILD: ADAPTING ENSEMBLE METHODS TO YOUR DATA

7 Learning with continuous and count labels

8 Learning with categorical features

9 Explaining your ensembles


About the Author

Gautam Kunapuli has over 15 years of experience in academia and the machine learning industry. He has developed several novel algorithms for diverse application domains including social network analysis, text and natural language processing, behaviour mining, educational data mining and biomedical applications. He has also published papers exploring ensemble methods in relational domains and with imbalanced data.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Machine Learning
981
Machine Learning Automation with TPOT
548,000 تومان
Machine Learning
1,004
Machine Learning Bookcamp
738,000 تومان
Machine Learning
1,040
Fundamentals of Machine Learning for Predictive Data Analytics
1,364,000 تومان
Machine Learning
998
Machine Learning in Production
509,000 تومان
الگوریتم‌‌ها
1,208
Mastering Machine Learning Algorithms
1,299,000 تومان
Machine Learning
1,055
Machine Learning Refined
1,053,000 تومان
Machine Learning
1,114
Machine Learning with TensorFlow
715,000 تومان
Data Science
763
Time Series Forecasting Using Foundation Models
480,000 تومان
Machine Learning
703
Machine Learning For Network Traffic and Video Quality Analysis
1,234,000 تومان
Machine Learning
515
Machine Learning System Design
620,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©