نام کتاب
Deep Reinforcement Learning for Wireless Communications and Networking

Theory, Applications and Implementation

Dinh Thai Hoang, Nguyen Van Huynh, Diep N. Nguyen, Ekram Hossain, Dusit Niyato

Paperback280 Pages
PublisherWiley
Edition1
LanguageEnglish
Year2023
ISBN9781119873679
831
A3175
انتخاب نوع چاپ:
جلد سخت
432,000ت
0
جلد نرم
372,000ت
0
طلق پاپکو و فنر
382,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

Deep_Reinforcement_Learning#

Networking#

Wireless#

توضیحات

Deep Reinforcement Learning for Wireless Communications and Networking


Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems


Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking.


Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design.


Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as:

  • Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning
  • Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security
  • Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association
  • Network layer applications, covering traffic routing, network classification, and network slicing


With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications.


Table of Contents

Part I Fundamentals of Deep Reinforcement Learning

1. Deep Reinforcement Learning and Its Applications

2 Markov Decision Process and Reinforcement Learning

3 Deep Reinforcement Learning Models and Techniques

4 A Case Study and Detailed Implementation


Part II Applications of DRL in Wireless Communications and Networking

5 DRL at the Physical Layer

6 DRL at the MAC Layer

7 DRL at the Network Layer

8 DRL at the Application and Service Layer


Part III Challenges, Approaches, Open Issues, and Emerging Research Topics

9 DRL Challenges in Wireless Networks

10 DRL and Emerging Topics in Wireless Networks


About the Author

Dinh Thai Hoang, Ph.D., is a faculty member at the University of Technology Sydney, Australia. He is also an Associate Editor of IEEE Communications Surveys & Tutorials and an Editor of IEEE Transactions on Wireless Communications, IEEE Transactions on Cognitive Communications and Networking, and IEEE Transactions on Vehicular Technology.


Nguyen Van Huynh, Ph.D., obtained his Ph.D. from the University of Technology Sydney in 2022. He is currently a Research Associate in the Department of Electrical and Electronic Engineering, Imperial College London, UK.


Diep N. Nguyen, Ph.D., is Director of Agile Communications and Computing Group and a member of the Faculty of Engineering and Information Technology at the University of Technology Sydney, Australia.


Ekram Hossain, Ph.D., is a Professor in the Department of Electrical and Computer Engineering at the University of Manitoba, Canada, and a Fellow of the IEEE. He co-authored the Wiley title Radio Resource Management in Multi-Tier Cellular Wireless Networks (2013).


Dusit Niyato, Ph.D., is a Professor in the School of Computer Science and Engineering at Nanyang Technological University, Singapore. He co-authored the Wiley title Radio Resource Management in Multi-Tier Cellular Wireless Networks (2013).

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Network
933
Packet Guide to Core Network Protocols
264,000 تومان
Network
794
Complete A+ Guide to IT Hardware and Software
1,821,000 تومان
Network
133
802.11 Wireless Networks
845,000 تومان
Network
347
Future Networking Essentials
766,000 تومان
Network
302
Introduction to Multiple Antenna Communications and Reconfigurable Sur...
860,000 تومان
Network
848
The Illustrated Network
1,084,000 تومان
Python
893
Network Science with Python
492,000 تومان
هک و امنیت
1,594
Network Protocols for Security Professionals
820,000 تومان
Network
795
IMS Application Developer's Handbook
694,000 تومان
Network
961
Networking All-in-One For Dummies
1,419,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©