0
نام کتاب
Deep Learning and XAI Techniques for Anomaly Detection

Integrate the theory and practice of deep anomaly explainability

Cher Simon

Paperback218 Pages
PublisherPackt
Edition1
LanguageEnglish
Year2023
ISBN9781804617755
1K
A4337
انتخاب نوع چاپ:
جلد سخت
512,000ت
0
جلد نرم
432,000ت
0
طلق پاپکو و فنر
442,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Deep_Learning

#XAI

#Anomaly

#Post_Hoc

#Explainability

توضیحات

Create interpretable AI models for transparent and explainable anomaly detection with this hands-on guide


Key Features

  • Build auditable XAI models for replicability and regulatory compliance
  • Derive critical insights from transparent anomaly detection models
  • Strike the right balance between model accuracy and interpretability


Book Description

Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance.

Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis.


This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability.


By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability.


What you will learn

  • Explore deep learning frameworks for anomaly detection
  • Mitigate bias to ensure unbiased and ethical analysis
  • Increase your privacy and regulatory compliance awareness
  • Build deep learning anomaly detectors in several domains
  • Compare intrinsic and post hoc explainability methods
  • Examine backpropagation and perturbation methods
  • Conduct model-agnostic and model-specific explainability techniques
  • Evaluate the explainability of your deep learning models


Who this book is for

This book is for anyone who aspires to explore explainable deep learning anomaly detection, tenured data scientists or ML practitioners looking for Explainable AI (XAI) best practices, or business leaders looking to make decisions on trade-off between performance and interpretability of anomaly detection applications. A basic understanding of deep learning and anomaly detection–related topics using Python is recommended to get the most out of this book.


Table of Contents

  1. Understanding Deep Learning Anomaly Detection
  2. Understanding Explainable AI
  3. Natural Language Processing Anomaly Explainability
  4. Time Series Anomaly Explainability
  5. Computer Vision Anomaly Explainability
  6. Differentiating Intrinsic versus Post Hoc Explainability
  7. Backpropagation Versus Perturbation Explainability
  8. Model-Agnostic versus Model-Specific Explainability
  9. Explainability Evaluation Schemes


About the Author

Cher Simon is a principal solutions architect specializing in artificial intelligence, machine learning, and data analytics at AWS. Cher has 20 years of experience in architecting enterprise-scale, data-driven, and AI-powered industry solutions. Besides building cloud-native solutions in her day-to-day role with customers, Cher is also an avid writer and a frequent speaker at AWS conferences.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Artificial intelligence
957
Federated AI for Real-World Business Scenarios
432,000 تومان
Artificial intelligence
1,087
AI Crash Course
602,000 تومان
Artificial intelligence
1,000
Interpretable AI
566,000 تومان
Azure
798
Azure AI Fundamentals (AI-900) Study Guide
442,000 تومان
Artificial intelligence
757
AI-Native Software Delivery
426,000 تومان
Artificial intelligence
944
Lean AI
455,000 تومان
Artificial intelligence
984
Python: Beginner's Guide to Artificial Intelligence
1,135,000 تومان
Artificial intelligence
1,041
AI and IoT for Smart City Applications
460,000 تومان
Python
1,390
Python for Programmers
1,236,000 تومان
Artificial intelligence
950
Hybrid Intelligent Approaches for Smart Energy
577,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©