نام کتاب
Debugging Machine Learning Models with Python

Develop high-performance, low-bias, and explainable machine learning and deep learning models

Ali Madani

Paperback345 Pages
PublisherPackt
Edition1
LanguageEnglish
Year2023
ISBN9781800208582
854
A3845
انتخاب نوع چاپ:
جلد سخت
535,000ت
0
جلد نرم
475,000ت
0
طلق پاپکو و فنر
485,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Debugging

#Machine_Learning

#Python

#Deep_learning

#PyTorch

توضیحات

Master reproducible ML and DL models with Python and PyTorch to achieve high performance, explainability, and real-world success


Key Features

  • Learn how to improve performance of your models and eliminate model biases
  • Strategically design your machine learning systems to minimize chances of failure in production
  • Discover advanced techniques to solve real-world challenges


Book Description

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies.


By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.


What you will learn

  • Enhance data quality and eliminate data flaws
  • Effectively assess and improve the performance of your models
  • Develop and optimize deep learning models with PyTorch
  • Mitigate biases to ensure fairness
  • Understand explainability techniques to improve model qualities
  • Use test-driven modeling for data processing and modeling improvement
  • Explore techniques to bring reliable models to production
  • Discover the benefits of causal and human-in-the-loop modeling


Who this book is for

This book is for data scientists, analysts, machine learning engineers, Python developers, and students looking to build reliable, high-performance, and explainable machine learning models for production across diverse industrial applications. Fundamental Python skills are all you need to dive into the concepts and practical examples covered. Whether you're new to machine learning or an experienced practitioner, this book offers a breadth of knowledge and practical insights to elevate your modeling skills.


Table of Contents

  1. Beyond Code Debugging
  2. Machine Learning Life Cycle
  3. Debugging toward Responsible AI
  4. Detecting Performance and Efficiency Issues in Machine Learning Models
  5. Improving the Performance of Machine Learning Models
  6. Interpretability and Explainability in Machine Learning Modeling
  7. Decreasing Bias and Achieving Fairness
  8. Controlling Risks Using Test-Driven Development
  9. Testing and Debugging for Production
  10. Versioning and Reproducible Machine Learning Modeling
  11. Avoiding and Detecting Data and Concept Drifts
  12. Going Beyond ML Debugging with Deep Learning
  13. Advanced Deep Learning Techniques
  14. Introduction to Recent Advancements in Machine Learning
  15. Correlation versus Causality
  16. Security and Privacy in Machine Learning
  17. Human-in-the-Loop Machine Learning


About the Author

Ali Madani worked as the director of machine learning at Cyclica Inc leading AI technology development front of Cyclica for drug discovery before acquisition of Cyclica by Recursion Pharmaceuticals. Ali completed his PhD at University of Toronto focusing on machine learning modeling in cancer setting and attained a Master of Mathematics from the University of Waterloo. As a believer in industry-oriented education and pro-democratization of knowledge, Ali has actively educated students and professionals through international workshops and courses on basic and advanced high-quality machine learning modeling. When not immersed in machine learning modeling and teaching, Ali enjoys exercising, cooking and traveling with his partner.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Python
881
Python for Teenagers
459,000 تومان
Python
686
Investing for Programmers
500,000 تومان
Python
843
Learn Web Development with Python
1,039,000 تومان
Python
648
Python for Everybody
381,000 تومان
Python
1,779
Hands-On Neuroevolution with Python
489,000 تومان
Python
439
Building ETL Pipelines with Python
376,000 تومان
Python
961
Teach Your Kids to Code
465,000 تومان
Python
892
Advanced Data Analytics Using Python
389,000 تومان
Python
1,057
Mining Social Media
342,000 تومان
Python
991
Learn to Code by Solving Problems
469,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©