0
نام کتاب
Data Labeling in Machine Learning with Python

Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models

Vijaya Kumar Suda

Paperback398 Pages
PublisherPackt
Edition1
LanguageEnglish
Year2024
ISBN9781804610541
851
A5185
انتخاب نوع چاپ:
جلد سخت
728,000ت
0
جلد نرم
648,000ت
0
طلق پاپکو و فنر
658,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Data

#Machine_Learning

#Python

#AI

#EDA

#OpenCV

#YOLO

توضیحات

Take your data preparation, machine learning, and GenAI skills to the next level by learning a range of Python algorithms and tools for data labeling

Key Features

  • Generate labels for regression in scenarios with limited training data
  • Apply generative AI and large language models (LLMs) to explore and label text data
  • Leverage Python libraries for image, video, and audio data analysis and data labeling


Book Description

Data labeling is the invisible hand that guides the power of artificial intelligence and machine learning. In today's data-driven world, mastering data labeling is not just an advantage, it's a necessity. Data Labeling in Machine Learning with Python empowers you to unearth value from raw data, create intelligent systems, and influence the course of technological evolution.

With this book, you'll discover the art of employing summary statistics, weak supervision, programmatic rules, and heuristics to assign labels to unlabeled training data programmatically. As you progress, you'll be able to enhance your datasets by mastering the intricacies of semi-supervised learning and data augmentation. Venturing further into the data landscape, you'll immerse yourself in the annotation of image, video, and audio data, harnessing the power of Python libraries such as seaborn, matplotlib, cv2, librosa, openai, and langchain. With hands-on guidance and practical examples, you'll gain proficiency in annotating diverse data types effectively.

By the end of this book, you'll have the practical expertise to programmatically label diverse data types and enhance datasets, unlocking the full potential of your data.


What you will learn

  • Excel in exploratory data analysis (EDA) for tabular, text, audio, video, and image data
  • Understand how to use Python libraries to apply rules to label raw data
  • Discover data augmentation techniques for adding classification labels
  • Leverage K-means clustering to classify unsupervised data
  • Explore how hybrid supervised learning is applied to add labels for classification
  • Master text data classification with generative AI
  • Detect objects and classify images with OpenCV and YOLO
  • Uncover a range of techniques and resources for data annotation


Who this book is for

This book is for machine learning engineers, data scientists, and data engineers who want to learn data labeling methods and algorithms for model training. Data enthusiasts and Python developers will be able to use this book to learn data exploration and annotation using Python libraries. Basic Python knowledge is beneficial but not necessary to get started.


Table of Contents

  1. Exploring Data for Machine Learning
  2. Labeling Data for Classification
  3. Labeling Data for Regression
  4. Exploring Image Data
  5. Labeling Image Data Using Rules
  6. Labeling Image Data Using Data Augmentation
  7. Labeling Text Data
  8. Exploring Video Data
  9. Labeling Video Data
  10. Exploring Audio Data
  11. Labeling Audio Data
  12. Hands-On Exploring Data Labeling Tools


About the Author

Vijaya Kumar Suda is a seasoned data and AI professional boasting over two decades of expertise collaborating with global clients. Having resided and worked in diverse locations such as Switzerland, Belgium, Mexico, Bahrain, India, Canada, and the USA, Vijaya has successfully assisted customers spanning various industries. Currently serving as a senior data and AI consultant at Microsoft, he is instrumental in guiding industry partners through their digital transformation endeavors using cutting-edge cloud technologies and AI capabilities. His proficiency encompasses architecture, data engineering, machine learning, generative AI, and cloud solutions.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
for Beginners
1,144
Data Engineering for Beginners
613,000 تومان
Software Engineering
2,158
Fundamentals of Data Engineering
706,000 تومان
Data
992
Graph Databases
455,000 تومان
AWS
637
AWS Certified Data Engineer Associate Study Guide
742,000 تومان
Data
893
Building a Data Culture
452,000 تومان
Data
693
Data Converters
715,000 تومان
Data
926
The Economics of Data, Analytics, and Digital Transformation
449,000 تومان
Data
836
Deciphering Data Architectures
504,000 تومان
Data
937
Data for All
401,000 تومان
Data
920
Exploring Modeling with Data and Differential Equations Using R
625,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©