نام کتاب
Data-Driven Fluid Mechanics

Combining First Principles and Machine Learning 

Miguel A. Mendez, Andrea Ianiro, Bernd R. Noack, Steven L. Brunton

Paperback468 Pages
PublisherCambridge
EditionNew Edition
LanguageEnglish
Year2023
ISBN9781108842143
1K
A3092
انتخاب نوع چاپ:
جلد سخت
802,000ت
0
جلد نرم
732,000ت
0
طلق پاپکو و فنر
742,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Data_Driven

#Fluid_Mechanics

توضیحات

Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures.


Table of Content


Part I Motivation

1 Analysis, Modeling, and Control of the Cylinder Wake

2 Coherent Structures in Turbulence: A Data Science Perspective

3 Machine Learning in Fluids: Pairing Methods with Problems


Part II Methods from Signal Processing

4 Continuous and Discrete LTI Systems

5 Time{Frequency Analysis and Wavelets


Part III Data-Driven Decompositions

6 The Proper Orthogonal Decomposition

7 The Dynamic Mode Decomposition: From Koopman Theory

8 Generalized and Multiscale Modal Analysis

9 Good Practice and Applications of Data-Driven Modal Analysis


Part IV Dynamical Systems

11 Nonlinear Dynamical Systems

12 Methods for System Identi cation

13 Modern Tools for the Stability Analysis of Fluid Flows


Part V Applications

15 Advancing Reacting Flow Simulations with Data-Driven Models

16 Reduced-Order Modeling for Aerodynamic Applications and

17 Machine Learning for Turbulence Control

18 Deep Reinforcement Learning Applied to Active Flow Control


Part VI Perspectives

19 The Computer as Scientist



About the Authors

Miguel A. Mendez is Assistant Professor at the von Karman Institute for Fluid Dynamics, Belgium. He has extensively used data-driven methods for post-processing numerical and experimental data in fluid dynamics. He developed a novel multi-resolution extension of POD which has been extensively used in various flow configurations of industrial interest. His current interests include data-driven modeling and reinforcement learning.


Andrea Ianiro is Associate Professor at Universidad Carlos III de Madrid, Spain. He is a well-known expert in the field of experimental thermo-fluids. He has pioneered the use of data-driven modal analysis in heat transfer studies for impinging jets and wall-bounded flows with heat transfer. He extensively applies these techniques in combination with advanced measurement techniques such as 3D PIV and IR thermography.


Bernd R. Noack is National Talent Professor at the Harbin Institute of Technology, China. He has pioneered the automated learning of control laws and reduced-order models for real-world experiments as well as nonlinear model-based control from first principles. He is Fellow of the American Physical Society and Mendeley/Web-of-Science Highly Cited Researcher with about 300 publications including 5 books, 2 US patents and over 100 journal publications.


Steven L. Brunton is Professor at the University of Washington, USA. He has pioneered the use of machine learning to fluid mechanics in areas ranging from system identification to flow control. He has an international reputation for his excellent teaching and communication skills, which have contributed to the dissemination of his research through textbooks and online lectures.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
ترمودینامیک
918
Liquid Separations with Membranes
348,000 تومان
مکانیک سیالات
954
Dynamics of Multiphase Flows
1,092,000 تومان
مکانیک سیالات
283
An Introduction to Computational Fluid Dynamics
1,068,000 تومان
مکانیک سیالات
1,019
Fundamental Mechanics of Fluids
1,054,000 تومان
مکانیک سیالات
289
The Finite Volume Method in Computational Fluid Dynamics
1,324,000 تومان
مکانیک سیالات
899
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
588,000 تومان
ریاضی فیزیک
447
Computational Fluid Dynamics - Volume 1
770,000 تومان
مکانیک سیالات
920
Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow
1,050,000 تومان
مکانیک سیالات
948
Computational Methods for Fluid Dynamics
1,077,000 تومان
مکانیک سیالات
870
Computational Techniques for Multiphase Flows
1,107,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©