Create intelligent, autonomous AI agents that can reason, plan, and adapt
Anjanava Biswas, Wrick Talukdar

#AI
#GenAI
تسلط بر هنر ساخت عاملهای هوش مصنوعی با استفاده از رویکرد هماهنگکننده، کارگر و واگذارکننده برای ارکستراسیون سیستمهای پیچیده هوش مصنوعی
ویژگیهای کلیدی:
توضیحات کتاب:
این راهنمای جامع به شما بینشهای بینظیری درباره آینده خودمختاری هوش مصنوعی ارائه میدهد و طراحی و استقرار عاملهای خودمختار هوش مصنوعی را که از هوش مصنوعی تولیدی (GenAI) برای برنامهریزی، استدلال و عمل استفاده میکنند، بررسی میکند. نوشتهشده توسط معماران برجسته هوش مصنوعی و کارشناسان شناختهشدهای که استانداردهای جهانی هوش مصنوعی را شکل میدهند و راهحلهای هوش مصنوعی در دنیای واقعی را میسازند، این کتاب به مبانی سیستمهای عاملمحور میپردازد و نحوه عملکرد عاملهای هوش مصنوعی، تصمیمگیری آنها و استفاده از ابزارها برای انجام وظایف پیچیده را شرح میدهد.
این کتاب از مبانی GenAI و معماریهای عاملمحور آغاز میکند و چارچوبهای تصمیمگیری، مکانیسمهای خودبهبودی و انطباقپذیری را بررسی میکند. کتاب تکنیکهای پیشرفته طراحی، مانند برنامهریزی چندمرحلهای، ادغام ابزارها و رویکرد هماهنگکننده، کارگر و واگذارکننده برای ساخت عاملهای مقیاسپذیر هوش مصنوعی را پوشش میدهد.
فراتر از طراحی، این کتاب به جنبههای حیاتی اعتماد، ایمنی و اخلاق میپردازد و اطمینان میدهد که سیستمهای هوش مصنوعی با ارزشهای انسانی همراستا بوده و بهطور شفاف عمل میکنند. کاربردهای واقعی نشان میدهند که چگونه عاملهای هوش مصنوعی صنایع مختلفی همچون اتوماسیون، امور مالی و مراقبتهای بهداشتی را متحول میکنند. این کتاب با ارائه بینشهای عمیق در زمینه فریمورکهای هوش مصنوعی، مهندسی دستورالعملها و همکاری چندعامله، شما را قادر میسازد تا عاملهای هوش مصنوعی نسل بعدی و سازگار با مقیاس بالا بسازید که فراتر از انجام وظایف ساده عمل کرده و با کمترین مداخله انسانی عمل میکنند.
آنچه خواهید آموخت:
مخاطبان این کتاب:
این کتاب برای توسعهدهندگان هوش مصنوعی، مهندسان یادگیری ماشین و معماران نرمافزار که میخواهند مهارتهای خود را در ساخت عاملهای هوش مصنوعی هوشمند و خودمختار ارتقا دهند، ایدهآل است. این کتاب برای حرفهایهایی مناسب است که پایهگذاری قوی در یادگیری ماشین و برنامهنویسی دارند، بهویژه کسانی که با زبان برنامهنویسی پایتون و مدلهای زبان بزرگ آشنا هستند. در حالی که تجربه قبلی در زمینه هوش مصنوعی تولیدی مفید است، کتاب مفاهیم پایهای را برای کسانی که با سیستمهای عاملمحور آشنا نیستند، پوشش میدهد.
Master the art of building AI agents with large language models using the coordinator, worker, and delegator approach for orchestrating complex AI systems
Gain unparalleled insights into the future of AI autonomy with this comprehensive guide to designing and deploying autonomous AI agents that leverage generative AI (GenAI) to plan, reason, and act. Written by industry-leading AI architects and recognized experts shaping global AI standards and building real-world enterprise AI solutions, it explores the fundamentals of agentic systems, detailing how AI agents operate independently, make decisions, and leverage tools to accomplish complex tasks.
Starting with the foundations of GenAI and agentic architectures, you’ll explore decision-making frameworks, self-improvement mechanisms, and adaptability. The book covers advanced design techniques, such as multi-step planning, tool integration, and the coordinator, worker, and delegator approach for scalable AI agents.
Beyond design, it addresses critical aspects of trust, safety, and ethics, ensuring AI systems align with human values and operate transparently. Real-world applications illustrate how agentic AI transforms industries such as automation, finance, and healthcare. With deep insights into AI frameworks, prompt engineering, and multi-agent collaboration, this book equips you to build next-generation adaptive, scalable AI agents that go beyond simple task execution and act with minimal human intervention.
This book is ideal for AI developers, machine learning engineers, and software architects who want to advance their skills in building intelligent, autonomous agents. It's perfect for professionals with a strong foundation in machine learning and programming, particularly those familiar with Python and large language models. While prior experience with generative AI is beneficial, the book covers foundational concepts for those new to agentic systems.
“More than a technical reference, this book serves as an essential guide for shaping the future of Generative AI and intelligent agents. It invites researchers, industry leaders, and innovators to actively participate in crafting the next chapter of AI, one that responsibly advances technological boundaries while enriching society.
I wholeheartedly endorse this timely and insightful work. I encourage you to delve deep into the chapters that follow, embracing your role as an active contributor to the exciting and evolving frontier in artificial intelligence.”
Matthew R. Scott, Chief Technology Officer, Minset.ai
“This book delves into the crucial issues of trust, transparency, explainability, and reliability, as well as ethical considerations such as bias and safety. It describes how agentic systems can be personalized and made context aware, and how they can plan and react to the results of their actions.
As somebody that has been working on artificial intelligence for decades, I believe this book will be a great resource for students, researchers, and professionals alike, charting a clear path forward in an era profoundly influenced by intelligent systems.”
Dr. Alex Acero, Member of the National Academy of Engineering, IEEE Fellow
“This isn’t a ‘just prompt it’ playbook, it’s a signal that agentic systems are moving from novelty to necessity. If you’re still calling everything a chatbot, this book might just help to rewire your vocabulary. I’m glad to see others leaning into what’s next; multi-agent systems (MASs) aren’t theoretical anymore, they’re the scaffolding for how real enterprise autonomy will scale.”
Doug Shannon, GenAI & Automation Thought Leader at IgniteGTM, Member of Forbes Technology Council
About the Author
Anjanava Biswas is an award-winning senior AI specialist solutions architect with over 17 years of industry experience. Specializing in machine learning, Generative AI, natural language processing, deep learning, data analytics, and cloud architecture, he partners with large enterprises to build and scale advanced AI systems in the cloud. Anjanava is widely recognized for his contributions to the field of applied AI. He has published research in multiple scientific journals and actively contributes to open-source AI/ML projects. His professional accolades include Fellowships with BCS (UK), the IET (UK), and IETE (India), and he is a senior IEEE member. A frequent public speaker, Anjanava has held key positions at industry giants like IBM and Oracle Corp. Originally from India, he now resides in San Diego, CA, with his wife and son, where he continues to innovate and inspire within the tech community.
Wrick Talukdar is a visionary technology leader in generative artificial intelligence (AI) at Amazon, with over two decades of global experience in AI, cloud computing, and product leadership. A pioneer in AI-driven transformation, he has led large-scale modernization initiatives that drive enterprise growth and impact millions worldwide. He has spearheaded the productization of award-winning AI/ML technologies, now deployed at scale for Fortune 500 companies, shaping real-world AI applications. A recognized figure in AI research, Wrick's work in generative AI, multimodality, natural language processing, and computer vision is widely cited and referenced in the field. As a senior IEEE member, Chair, and panelist in multiple industry forums, he advises global committees like CTSoc Industry Forums and NIC, setting industry standards and shaping AI's role for the future. He frequently presents his innovations at premier conferences such as World Technology Summit, IEEE HKN, ICCE, CERAWeek, and ADIPEC, bridging cutting-edge research with real-world AI applications to accelerate industry-wide innovation. Deeply rooted in his computer science background, he co-chairs IEEE NIC to empower young professionals. As an author and thought leader, he continues to push AI's boundaries, inspiring future innovators. Wrick lives in California with his family.









