(From Scratch)
Sebastian Raschka

#LLM
#LLMs
#GPT
#AI
#PyTorch
در کتاب Build a Large Language Model شما کشف خواهید کرد که مدلهای زبانی بزرگ چگونه از درون کار میکنند. در این کتاب آموزنده، سباستین راشکا، نویسنده پرفروش، شما را گامبهگام در مسیر ساخت یک مدل زبانی بزرگ راهنمایی میکند و هر مرحله را با توضیحات روشن، نمودارها و مثالها توضیح میدهد. از طراحی اولیه و ساخت مدل تا پیشآموزش روی یک مجموعه داده عمومی و سپس تنظیم دقیق برای وظایف خاص، همه چیز را خواهید آموخت.
این کتاب پرده از نحوه عملکرد LLMها برمیدارد و شما را با ساختار درونی هوش مصنوعی مولد آشنا میکند. همچنین شامل نکات عملی در مورد ساخت LLMها است، از جمله ایجاد یک پایپلاین بارگذاری داده، مونتاژ اجزای داخلی مدل و تکنیکهای تنظیم دقیق. در طول مسیر، مدل پایه خود را به یک ابزار طبقهبندی متن و حتی یک چتبات که به دستورات شما پاسخ میدهد، تبدیل خواهید کرد.
سباستین راشکا بیش از یک دهه در حوزه یادگیری ماشین و هوش مصنوعی فعالیت داشته است. او در سال ۲۰۲۲ به Lightning AI پیوست و در آنجا بر روی تحقیق در مورد هوش مصنوعی و مدلهای زبانی بزرگ، توسعه نرمافزارهای متنباز و تولید محتوای آموزشی تمرکز دارد. پیش از آن، او بهعنوان استاد یار در دانشگاه ویسکانسین-مدیسن در دپارتمان آمار فعالیت داشت و تحقیقاتش بر یادگیری عمیق و ماشین لرنینگ متمرکز بود. او علاقه زیادی به آموزش دارد و بهخاطر کتابهای پرفروش خود در زمینه یادگیری ماشین با استفاده از نرمافزارهای متنباز شهرت دارد.
Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up!
In Build a Large Language Model (from Scratch) bestselling author Sebastian Raschka guides you step by step through creating your own LLM. Each stage is explained with clear text, diagrams, and examples. You’ll go from the initial design and creation, to pretraining on a general corpus, and on to fine-tuning for specific tasks.
Build a Large Language Model (from Scratch) teaches you how to:
• Plan and code all the parts of an LLM
• Prepare a dataset suitable for LLM training
• Fine-tune LLMs for text classification and with your own data
• Use human feedback to ensure your LLM follows instructions
• Load pretrained weights into an LLM
Build a Large Language Model (from Scratch) takes you inside the AI black box to tinker with the internal systems that power generative AI. As you work through each key stage of LLM creation, you’ll develop an in-depth understanding of how LLMs work, their limitations, and their customization methods. Your LLM can be developed on an ordinary laptop, and used as your own personal assistant.
About the technology
Physicist Richard P. Feynman reportedly said, “I don’t understand anything I can’t build.” Based on this same powerful principle, bestselling author Sebastian Raschka guides you step by step as you build a GPT-style LLM that you can run on your laptop. This is an engaging book that covers each stage of the process, from planning and coding to training and fine-tuning.
About the book
Build a Large Language Model (From Scratch) is a practical and eminently-satisfying hands-on journey into the foundations of generative AI. Without relying on any existing LLM libraries, you’ll code a base model, evolve it into a text classifier, and ultimately create a chatbot that can follow your conversational instructions. And you’ll really understand it because you built it yourself!
What's inside
• Plan and code an LLM comparable to GPT-2
• Load pretrained weights
• Construct a complete training pipeline
• Fine-tune your LLM for text classification
• Develop LLMs that follow human instructions
About the reader
Readers need intermediate Python skills and some knowledge of machine learning. The LLM you create will run on any modern laptop and can optionally utilize GPUs.
About the author
Sebastian Raschka is a Staff Research Engineer at Lightning AI, where he works on LLM research and develops open-source software.
The technical editor on this book was David Caswell.
Table of Contents
1. Understanding large language models
2. Working with text data
3. Coding attention mechanisms
4. Implementing a GPT model from scratch to generate text
5. Pretraining on unlabeled data
6. Fine-tuning for classification
7. Fine-tuning to follow instructions
A. Introduction to PyTorch
B. References and further reading
C. Exercise solutions
D. Adding bells and whistles to the training loop
E. Parameter-efficient fine-tuning with LoRA
Sebastian Raschka has been working on machine learning and AI for more than a decade. Sebastian joined Lightning AI in 2022, where he now focuses on AI and LLM research, developing open-source software, and creating educational material. Prior to that, Sebastian worked at the University of Wisconsin-Madison as an assistant professor in the Department of Statistics, focusing on deep learning and machine learning research. He has a strong passion for education and is best known for his bestselling books on machine learning using open-source software.









