نام کتاب
Bayesian Optimization in Action

Quan Nguyen

Paperback426 Pages
PublisherManning
Edition1
LanguageEnglish
Year2023
ISBN9781633439078
864
A3558
انتخاب نوع چاپ:
جلد سخت
689,000ت
0
جلد نرم
629,000ت
0
طلق پاپکو و فنر
639,000ت
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Bayesian_Optimization

#Python

#ML

#PyTorch

#GPyTorch

#BoTorch

#deep_neural_networks

#machine_learning

توضیحات

Bayesian optimization helps pinpoint the best configuration for your machine learning models with speed and accuracy. Put its advanced techniques into practice with this hands-on guide.


In Bayesian Optimization in Action you will learn how to:


  • Train Gaussian processes on both sparse and large data sets
  • Combine Gaussian processes with deep neural networks to make them flexible and expressive
  • Find the most successful strategies for hyperparameter tuning
  • Navigate a search space and identify high-performing regions
  • Apply Bayesian optimization to cost-constrained, multi-objective, and preference optimization
  • Implement Bayesian optimization with PyTorch, GPyTorch, and BoTorch


Bayesian Optimization in Action shows you how to optimize hyperparameter tuning, A/B testing, and other aspects of the machine learning process by applying cutting-edge Bayesian techniques. Using clear language, illustrations, and concrete examples, this book proves that Bayesian optimization doesn’t have to be difficult! You’ll get in-depth insights into how Bayesian optimization works and learn how to implement it with cutting-edge Python libraries. The book’s easy-to-reuse code samples let you hit the ground running by plugging them straight into your own projects.

Forewords by Luis Serrano and David Sweet.



About the technology

In machine learning, optimization is about achieving the best predictions—shortest delivery routes, perfect price points, most accurate recommendations—in the fewest number of steps. Bayesian optimization uses the mathematics of probability to fine-tune ML functions, algorithms, and hyperparameters efficiently when traditional methods are too slow or expensive.


About the book

Bayesian Optimization in Action teaches you how to create efficient machine learning processes using a Bayesian approach. In it, you’ll explore practical techniques for training large datasets, hyperparameter tuning, and navigating complex search spaces. This interesting book includes engaging illustrations and fun examples like perfecting coffee sweetness, predicting weather, and even debunking psychic claims. You’ll learn how to navigate multi-objective scenarios, account for decision costs, and tackle pairwise comparisons.


What's inside

  • Gaussian processes for sparse and large datasets
  • Strategies for hyperparameter tuning
  • Identify high-performing regions
  • Examples in PyTorch, GPyTorch, and BoTorch


About the reader

For machine learning practitioners who are confident in math and statistics.


Table of Contents

1 Introduction to Bayesian optimization

PART 1 MODELING WITH GAUSSIAN PROCESSES

2 Gaussian processes as distributions over functions

3 Customizing a Gaussian process with the mean and covariance functions

PART 2 MAKING DECISIONS WITH BAYESIAN OPTIMIZATION

4 Refining the best result with improvement-based policies

5 Exploring the search space with bandit-style policies

6 Leveraging information theory with entropy-based policies

PART 3 EXTENDING BAYESIAN OPTIMIZATION TO SPECIALIZED SETTINGS

7 Maximizing throughput with batch optimization

8 Satisfying extra constraints with constrained optimization

9 Balancing utility and cost with multifidelity optimization

10 Learning from pairwise comparisons with preference optimization

11 Optimizing multiple objectives at the same time

PART 4 SPECIAL GAUSSIAN PROCESS MODELS

12 Scaling Gaussian processes to large datasets

13 Combining Gaussian processes with neural networks


About the Author

Quan Nguyen is a Python programmer and machine learning enthusiast. He is interested in solving decision-making problems that involve uncertainty. Quan has authored several books on Python programming and scientific computing. He is currently pursuing a Ph.D. degree in computer science at Washington University in St. Louis where he does research on Bayesian methods in machine learning.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Machine Learning
1,016
Machine Learning and Data Science Blueprints for Finance
636,000 تومان
Machine Learning
1,026
Managing Machine Learning Projects
461,000 تومان
JavaScript
1,231
Hands-on Machine Learning with JavaScript
539,000 تومان
Machine Learning
223
Approaching Almost Any Machine Learning Problem
490,000 تومان
R
1,052
Machine Learning with R
1,312,000 تومان
Python
1,904
Distributed Machine Learning with Python
473,000 تومان
Machine Learning
1,192
Foundations of Machine Learning
876,000 تومان
Machine Learning
909
Machine Learning for Business
471,000 تومان
Machine Learning
935
Machine Learning Interviews
501,000 تومان
Machine Learning
1,034
TinyML Cookbook
1,052,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©