M. A. Armstrong

#Topology
#Triangulations
#LeJschetz
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties will help students gain a rounded understanding of the subject.
Table of Contents
Chapter 1 Introduction
Chapter 2 Continuity
Chapter 3 Compactness and connectedness
Chapter 4 Identification spaces
Chapter 5 The fundamental group
Chapter 6 Triangulations
Chapter 7 Surfaces
Chapter 8 Simplicial homology
Chapter 9 Degree and LeJschetz number
Chapter 10 Knots and covering spaces









