0
نام کتاب
Advanced Deep Learning with TensorFlow 2 and Keras

 Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more

Rowel Atienza

Paperback513 Pages
PublisherPackt
Edition2
LanguageEnglish
Year2020
ISBN9781800568273
1K
A3766
انتخاب نوع چاپ:
جلد سخت
866,000ت
0
جلد نرم
956,000ت(2 جلدی)
0
طلق پاپکو و فنر
976,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#Deep_Learning

#TensorFlow2

#Keras

#DL

#GAN

#VAE

#AI

#DenseNet

#MLPss

#CNN

#RNN

توضیحات

Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras


Key Features

  • Explore the most advanced deep learning techniques that drive modern AI results
  • New coverage of unsupervised deep learning using mutual information, object detection, and semantic segmentation
  • Completely updated for TensorFlow 2.x


Book Description

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.


Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.


Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.


Next, you'll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.


What you will learn

  • Use mutual information maximization techniques to perform unsupervised learning
  • Use segmentation to identify the pixel-wise class of each object in an image
  • Identify both the bounding box and class of objects in an image using object detection
  • Learn the building blocks for advanced techniques - MLPss, CNN, and RNNs
  • Understand deep neural networks - including ResNet and DenseNet
  • Understand and build autoregressive models - autoencoders, VAEs, and GANs
  • Discover and implement deep reinforcement learning methods


Who this book is for

This is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.


Table of Contents

  1. Introducing Advanced Deep Learning with Keras
  2. Deep Neural Networks
  3. Autoencoders
  4. Generative Adversarial Networks (GANs)
  5. Improved GANs
  6. Disentangled Representation GANs
  7. Cross-Domain GANs
  8. Variational Autoencoders (VAEs)
  9. Deep Reinforcement Learning
  10. Policy Gradient Methods
  11. Object Detection
  12. Semantic Segmentation
  13. Unsupervised Learning Using Mutual Information


About the author

Rowel Atienza is an Associate Professor at the Electrical and Electronics Engineering Institute of the University of the Philippines. He has been fascinated by intelligent robots since he was young. In his MEng at the National University of Singapore, he formulated a control algorithm to enable a four-legged robot walk. In his PhD at the Australian National University, he built the first active gaze tracking system for natural human-robot interaction. Rowel likes teaching and research on computer vision and deep learning. He is a recipient of both government and private research funds.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
TensorFlow
1,070
Generative AI with Python and TensorFlow 2
855,000 تومان
Machine Learning
1,142
Hands-On Machine Learning with TensorFlow.js
514,000 تومان
Deep Learning
706
Hands-On Deep Learning for Images with TensorFlow
308,000 تومان
Deep Learning
951
Beginning Deep Learning with TensorFlow
1,213,000 تومان
TensorFlow
2,067
Advanced Natural Language Processing with TensorFlow 2
704,000 تومان
Machine Learning
6,721
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
1,377,000 تومان
TensorFlow
1,045
TensorFlow 2 Pocket Reference
476,000 تومان
TensorFlow
1,009
Learning TensorFlow.js
581,000 تومان
Deep Learning
1,203
Advanced Deep Learning with TensorFlow 2 and Keras
956,000 تومان
NLP
1,040
Natural Language Processing with TensorFlow
1,061,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©