نام کتاب
AI-Powered Search

Trey Grainger, Doug Turnbull, Max Irwin

Paperback520 Pages
PublisherManning
Edition1
LanguageEnglish
Year2025
ISBN9781617296970
414
A5801
انتخاب نوع چاپ:
جلد سخت
792,000ت
0
جلد نرم
892,000ت(2 جلدی)
0
طلق پاپکو و فنر
912,000ت(2 جلدی)
0
مجموع:
0تومان
کیفیت متن:اورجینال انتشارات
قطع:B5
رنگ صفحات:دارای متن و کادر رنگی
پشتیبانی در روزهای تعطیل!
ارسال به سراسر کشور

#AI-Powered

#RAG

#LLMs

توضیحات

Apply cutting-edge machine learning techniques—from crowdsourced relevance and knowledge graph learning, to Large Language Models (LLMs)—to enhance the accuracy and relevance of your search results.


Delivering effective search is one of the biggest challenges you can face as an engineer. AI-Powered Search is an in-depth guide to building intelligent search systems you can be proud of. It covers the critical tools you need to automate ongoing relevance improvements within your search applications.


Inside you’ll learn modern, data-science-driven search techniques like:


• Semantic search using dense vector embeddings from foundation models

• Retrieval augmented generation (RAG)

• Question answering and summarization combining search and LLMs

• Fine-tuning transformer-based LLMs

• Personalized search based on user signals and vector embeddings

• Collecting user behavioral signals and building signals boosting models

• Semantic knowledge graphs for domain-specific learning

• Semantic query parsing, query-sense disambiguation, and query intent classification

• Implementing machine-learned ranking models (Learning to Rank)

• Building click models to automate machine-learned ranking

• Generative search, hybrid search, multimodal search, and the search frontier


AI-Powered Search will help you build the kind of highly intelligent search applications demanded by modern users. Whether you’re enhancing your existing search engine or building from scratch, you’ll learn how to deliver an AI-powered service that can continuously learn from every content update, user interaction, and the hidden semantic relationships in your content. You’ll learn both how to enhance your AI systems with search and how to integrate large language models (LLMs) and other foundation models to massively accelerate the capabilities of your search technology.

Foreword by Grant Ingersoll


About the technology

Modern search is more than keyword matching. Much, much more. Search that learns from user interactions, interprets intent, and takes advantage of AI tools like large language models (LLMs) can deliver highly targeted and relevant results. This book shows you how to up your search game using state-of-the-art AI algorithms, techniques, and tools.


About the book

AI-Powered Search teaches you to create a search that understands natural language and improves automatically the more it is used. As you work through dozens of interesting and relevant examples, you’ll learn powerful AI-based techniques like semantic search on embeddings, question answering powered by LLMs, real-time personalization, and Retrieval Augmented Generation (RAG).


What's inside


• Sparse lexical and embedding-based semantic search

• Question answering, RAG, and summarization using LLMs

• Personalized search and signals boosting models

• Learning to Rank, multimodal, and hybrid search


About the reader

For software developers and data scientists familiar with the basics of search engine technology.


Table of Contents

Part 1. Modern search relevance

1. Introducing AI-powered search

2. Working with natural language

3. Ranking and content-based relevance

4. Crowdsourced relevance


Part 2. Learning domain-specific intent

5. Knowledge graph learning

6. Using context to learn domain-specific language

7. Interpreting query intent through semantic search


Part 3. Reflected intelligence

8. Signals-boosting models

9. Personalized search

10. Learning to rank for generalizable search relevance

11. Automating learning to rank with click models

12. Overcoming ranking bias through active learning


Part 4. The search frontier

13. Semantic search with dense vectors

14. Question answering with a fine-tuned large language model

15. Foundation models and emerging search paradigms

A. Running the code examples

B. Supported search engines and vector database


About the Authors

Trey Grainger is the Founder of Searchkernel and former Chief Algorithms Officer and SVP of Engineering at Lucidworks. 


Doug Turnbull is a Principal Engineer at Reddit and former Staff Relevance Engineer at Spotify. 


Max Irwin is the Founder of Max.io and former Managing Consultant at OpenSource Connections.

دیدگاه خود را بنویسید
نظرات کاربران (0 دیدگاه)
نظری وجود ندارد.
کتاب های مشابه
Artificial intelligence
1,171
Deep Learning and XAI Techniques for Anomaly Detection
400,000 تومان
Artificial intelligence
876
Hugging Face in Action
565,000 تومان
برنامه‌‌ نویسـی
1,486
Essential Math for AI
986,000 تومان
Artificial intelligence
770
Learning LangChain
487,000 تومان
Artificial intelligence
480
The Quick Guide to Prompt Engineering
687,000 تومان
Artificial intelligence
1,361
Creators of Intelligence
572,000 تومان
Artificial intelligence
930
Practical AI for Healthcare Professionals
453,000 تومان
Artificial intelligence
1,090
Architecting AI Solutions on Salesforce
536,000 تومان
Artificial intelligence
553
The Complete Obsolete Guide to Generative AI
424,000 تومان
Artificial intelligence
907
Practical Artificial Intelligence
1,092,000 تومان
قیمت
منصفانه
ارسال به
سراسر کشور
تضمین
کیفیت
پشتیبانی در
روزهای تعطیل
خرید امن
و آسان
آرشیو بزرگ
کتاب‌های تخصصی
هـر روز با بهتــرین و جــدیــدتـرین
کتاب های روز دنیا با ما همراه باشید
آدرس
پشتیبانی
مدیریت
ساعات پاسخگویی
درباره اسکای بوک
دسترسی های سریع
  • راهنمای خرید
  • راهنمای ارسال
  • سوالات متداول
  • قوانین و مقررات
  • وبلاگ
  • درباره ما
چاپ دیجیتال اسکای بوک. 2024-2022 ©